大型数据库中可行周期模式的发现

Xiao Luo, Hua Yuan, Qian Luo
{"title":"大型数据库中可行周期模式的发现","authors":"Xiao Luo, Hua Yuan, Qian Luo","doi":"10.1109/DASC.2013.87","DOIUrl":null,"url":null,"abstract":"In real applications, there are two problems for the periodic patterns mining task: finding the frequent pattern(s) and determining their periodicity. In this paper, we propose a new method to investigate the periodic patterns form common frequent patterns. First, all the candidates patterns are generated by general frequent pattern mining algorithm. Then, for each pattern, all the time (order) attributes are extracted form its support records. Finally, all these time (order) attributes are partitioned into suitable n periods to obtain the feasible periodicity. To this end, two new parameters of per and fea are introduced to measure the periodicity and feasibility of the candidate patterns. The experiment results show that the method can be used to explore feasible periodic patterns efficiently and find some interesting patterns in business database.","PeriodicalId":179557,"journal":{"name":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Discovering Feasible Periodic Patterns in Large Database\",\"authors\":\"Xiao Luo, Hua Yuan, Qian Luo\",\"doi\":\"10.1109/DASC.2013.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real applications, there are two problems for the periodic patterns mining task: finding the frequent pattern(s) and determining their periodicity. In this paper, we propose a new method to investigate the periodic patterns form common frequent patterns. First, all the candidates patterns are generated by general frequent pattern mining algorithm. Then, for each pattern, all the time (order) attributes are extracted form its support records. Finally, all these time (order) attributes are partitioned into suitable n periods to obtain the feasible periodicity. To this end, two new parameters of per and fea are introduced to measure the periodicity and feasibility of the candidate patterns. The experiment results show that the method can be used to explore feasible periodic patterns efficiently and find some interesting patterns in business database.\",\"PeriodicalId\":179557,\"journal\":{\"name\":\"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2013.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2013.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在实际应用中,周期模式挖掘任务存在两个问题:发现频繁模式和确定频繁模式的周期性。在本文中,我们提出了一种新的方法来研究由常见的频繁模式构成的周期模式。首先,利用通用频繁模式挖掘算法生成候选模式。然后,对于每个模式,从其支持记录中提取所有时间(顺序)属性。最后,将这些时间(阶)属性划分为合适的n个周期,得到可行周期。为此,引入了两个新的参数per和fea来衡量候选模式的周期性和可行性。实验结果表明,该方法能够有效地挖掘商业数据库中可行的周期模式,并从中发现一些有趣的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Discovering Feasible Periodic Patterns in Large Database
In real applications, there are two problems for the periodic patterns mining task: finding the frequent pattern(s) and determining their periodicity. In this paper, we propose a new method to investigate the periodic patterns form common frequent patterns. First, all the candidates patterns are generated by general frequent pattern mining algorithm. Then, for each pattern, all the time (order) attributes are extracted form its support records. Finally, all these time (order) attributes are partitioned into suitable n periods to obtain the feasible periodicity. To this end, two new parameters of per and fea are introduced to measure the periodicity and feasibility of the candidate patterns. The experiment results show that the method can be used to explore feasible periodic patterns efficiently and find some interesting patterns in business database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信