关于任意欠分散离散分布

A. Huang
{"title":"关于任意欠分散离散分布","authors":"A. Huang","doi":"10.1080/00031305.2022.2106305","DOIUrl":null,"url":null,"abstract":"Abstract We survey a range of popular generalized count distributions, investigating which (if any) can be arbitrarily underdispersed, that is, its variance can be arbitrarily small compared to its mean. A philosophical implication is that some models failing this simple criterion should not be considered as “statistical models” according to McCullagh’s extendibility criterion. Four practical implications are also discussed: (i) functional independence of parameters, (ii) double generalized linear models, (iii) simulation of underdispersed counts, and (iv) severely underdispersed count regression. We suggest that all future generalizations of the Poisson distribution be tested against this key property.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Arbitrarily Underdispersed Discrete Distributions\",\"authors\":\"A. Huang\",\"doi\":\"10.1080/00031305.2022.2106305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We survey a range of popular generalized count distributions, investigating which (if any) can be arbitrarily underdispersed, that is, its variance can be arbitrarily small compared to its mean. A philosophical implication is that some models failing this simple criterion should not be considered as “statistical models” according to McCullagh’s extendibility criterion. Four practical implications are also discussed: (i) functional independence of parameters, (ii) double generalized linear models, (iii) simulation of underdispersed counts, and (iv) severely underdispersed count regression. We suggest that all future generalizations of the Poisson distribution be tested against this key property.\",\"PeriodicalId\":342642,\"journal\":{\"name\":\"The American Statistician\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Statistician\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2022.2106305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2022.2106305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们调查了一系列流行的广义计数分布,研究了哪些(如果有的话)可以任意欠分散,即其方差相对于均值可以任意小。一个哲学上的含义是,根据McCullagh的可扩展性标准,一些不符合这个简单标准的模型不应该被视为“统计模型”。还讨论了四个实际意义:(i)参数的函数独立性,(ii)双广义线性模型,(iii)欠分散计数的模拟,以及(iv)严重欠分散计数回归。我们建议今后所有泊松分布的推广都要根据这一关键性质进行检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Arbitrarily Underdispersed Discrete Distributions
Abstract We survey a range of popular generalized count distributions, investigating which (if any) can be arbitrarily underdispersed, that is, its variance can be arbitrarily small compared to its mean. A philosophical implication is that some models failing this simple criterion should not be considered as “statistical models” according to McCullagh’s extendibility criterion. Four practical implications are also discussed: (i) functional independence of parameters, (ii) double generalized linear models, (iii) simulation of underdispersed counts, and (iv) severely underdispersed count regression. We suggest that all future generalizations of the Poisson distribution be tested against this key property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信