{"title":"血管生物识别中变形攻击的可行性","authors":"Altan K. Aydemir, Jutta Hämmerle-Uhl, A. Uhl","doi":"10.1109/IJCB52358.2021.9484372","DOIUrl":null,"url":null,"abstract":"For the first time, the feasibility of creating morphed samples for attacking vascular biometrics is investigated, in particular finger vein recognition schemes are addressed. A conducted vulnerability analysis reveals that (i) the extent of vulnerability, (ii) the type of most vulnerable recognition scheme, and (iii) the preferred way to determine the best morph sample for a given target sample depends on the employed sensor. Digital morphs represent a significant threat as vulnerability in terms of IAPMR is often found to be > 0.8 or > 0.6 (in sensor dependent manner). Physical artefacts created from these morphs lead to clearly lower vulnerability (with IAPMR ≤ 0.25), however, this has to be attributed to the low quality of the artefacts (and is expected be increase for better artefact quality).","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Morphing-Attacks in Vascular Biometrics\",\"authors\":\"Altan K. Aydemir, Jutta Hämmerle-Uhl, A. Uhl\",\"doi\":\"10.1109/IJCB52358.2021.9484372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, the feasibility of creating morphed samples for attacking vascular biometrics is investigated, in particular finger vein recognition schemes are addressed. A conducted vulnerability analysis reveals that (i) the extent of vulnerability, (ii) the type of most vulnerable recognition scheme, and (iii) the preferred way to determine the best morph sample for a given target sample depends on the employed sensor. Digital morphs represent a significant threat as vulnerability in terms of IAPMR is often found to be > 0.8 or > 0.6 (in sensor dependent manner). Physical artefacts created from these morphs lead to clearly lower vulnerability (with IAPMR ≤ 0.25), however, this has to be attributed to the low quality of the artefacts (and is expected be increase for better artefact quality).\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility of Morphing-Attacks in Vascular Biometrics
For the first time, the feasibility of creating morphed samples for attacking vascular biometrics is investigated, in particular finger vein recognition schemes are addressed. A conducted vulnerability analysis reveals that (i) the extent of vulnerability, (ii) the type of most vulnerable recognition scheme, and (iii) the preferred way to determine the best morph sample for a given target sample depends on the employed sensor. Digital morphs represent a significant threat as vulnerability in terms of IAPMR is often found to be > 0.8 or > 0.6 (in sensor dependent manner). Physical artefacts created from these morphs lead to clearly lower vulnerability (with IAPMR ≤ 0.25), however, this has to be attributed to the low quality of the artefacts (and is expected be increase for better artefact quality).