自适应压缩感知中主成分投影的多水平子采样

Tin Vlašić, D. Seršić
{"title":"自适应压缩感知中主成分投影的多水平子采样","authors":"Tin Vlašić, D. Seršić","doi":"10.1109/ISPA52656.2021.9552127","DOIUrl":null,"url":null,"abstract":"bstract-This paper examines the performance of principal-component-analysis (PCA) projections in compressive sensing (CS). Observed signals are assumed to follow a Gaussian distribution and have the asymptotic sparsity property in a wavelet transform domain. In order to exploit these signal priors, we propose multilevel subsampling of PCA projections in addition to sparsity-promoting $l$ 1 regularization. The PCA projections are subsampled in levels that correspond to different wavelet scales. The proposed method outperforms universal random projections of standard CS for noise-corrupted measurement setups and compressible signals. Experimental results from simulations conducted on images from the MNIST dataset prove the framework's robustness and good reconstruction ability.","PeriodicalId":131088,"journal":{"name":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing\",\"authors\":\"Tin Vlašić, D. Seršić\",\"doi\":\"10.1109/ISPA52656.2021.9552127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"bstract-This paper examines the performance of principal-component-analysis (PCA) projections in compressive sensing (CS). Observed signals are assumed to follow a Gaussian distribution and have the asymptotic sparsity property in a wavelet transform domain. In order to exploit these signal priors, we propose multilevel subsampling of PCA projections in addition to sparsity-promoting $l$ 1 regularization. The PCA projections are subsampled in levels that correspond to different wavelet scales. The proposed method outperforms universal random projections of standard CS for noise-corrupted measurement setups and compressible signals. Experimental results from simulations conducted on images from the MNIST dataset prove the framework's robustness and good reconstruction ability.\",\"PeriodicalId\":131088,\"journal\":{\"name\":\"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA52656.2021.9552127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA52656.2021.9552127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了主成分分析(PCA)投影在压缩感知(CS)中的性能。假设观测信号服从高斯分布,在小波变换域中具有渐近稀疏性。为了利用这些信号先验,我们提出了PCA预测的多级子采样以及稀疏性提升的$ 1 $ 1正则化。主成分分析的投影在对应不同小波尺度的水平上进行次采样。对于噪声干扰的测量设置和可压缩信号,该方法优于标准CS的通用随机投影。对MNIST数据集图像的仿真实验结果表明,该框架具有较好的鲁棒性和重构能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing
bstract-This paper examines the performance of principal-component-analysis (PCA) projections in compressive sensing (CS). Observed signals are assumed to follow a Gaussian distribution and have the asymptotic sparsity property in a wavelet transform domain. In order to exploit these signal priors, we propose multilevel subsampling of PCA projections in addition to sparsity-promoting $l$ 1 regularization. The PCA projections are subsampled in levels that correspond to different wavelet scales. The proposed method outperforms universal random projections of standard CS for noise-corrupted measurement setups and compressible signals. Experimental results from simulations conducted on images from the MNIST dataset prove the framework's robustness and good reconstruction ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信