卷积网络加速器VLIW代码生成

Maurice Peemen, W. Pramadi, B. Mesman, H. Corporaal
{"title":"卷积网络加速器VLIW代码生成","authors":"Maurice Peemen, W. Pramadi, B. Mesman, H. Corporaal","doi":"10.1145/2764967.2771928","DOIUrl":null,"url":null,"abstract":"This paper presents a compiler flow to map Deep Convolutional Networks (ConvNets) to a highly specialized VLIW accelerator core targeting the low-power embedded market. Earlier works have focused on energy efficient accelerators for this class of algorithms, but none of them provides a complete and practical programming model. Due to the large parameter set of a ConvNet it is essential that the user can abstract from the accelerator architecture and does not have to rely on an error prone and ad-hoc assembly programming model. By using modulo scheduling for software pipelining we demonstrate that our automatic generated code achieves equal or within 5-20% less hardware utilization w.r.t. code written manually by experts. Our compiler removes the huge manual workload to efficiently map ConvNets to an energy-efficient core for the next-generation mobile and wearable devices.","PeriodicalId":110157,"journal":{"name":"Proceedings of the 18th International Workshop on Software and Compilers for Embedded Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"VLIW Code Generation for a Convolutional Network Accelerator\",\"authors\":\"Maurice Peemen, W. Pramadi, B. Mesman, H. Corporaal\",\"doi\":\"10.1145/2764967.2771928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a compiler flow to map Deep Convolutional Networks (ConvNets) to a highly specialized VLIW accelerator core targeting the low-power embedded market. Earlier works have focused on energy efficient accelerators for this class of algorithms, but none of them provides a complete and practical programming model. Due to the large parameter set of a ConvNet it is essential that the user can abstract from the accelerator architecture and does not have to rely on an error prone and ad-hoc assembly programming model. By using modulo scheduling for software pipelining we demonstrate that our automatic generated code achieves equal or within 5-20% less hardware utilization w.r.t. code written manually by experts. Our compiler removes the huge manual workload to efficiently map ConvNets to an energy-efficient core for the next-generation mobile and wearable devices.\",\"PeriodicalId\":110157,\"journal\":{\"name\":\"Proceedings of the 18th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2764967.2771928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764967.2771928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一个编译器流程,将深度卷积网络(ConvNets)映射到针对低功耗嵌入式市场的高度专业化的VLIW加速器核心。早期的工作集中在这类算法的节能加速器上,但它们都没有提供一个完整和实用的编程模型。由于卷积神经网络的参数集很大,因此用户必须能够从加速器体系结构中抽象出来,而不必依赖于容易出错和特别的汇编编程模型。通过对软件流水线使用模调度,我们证明了我们自动生成的代码与专家手工编写的代码相比,在5-20%的范围内实现了相同或更少的硬件利用率。我们的编译器消除了巨大的人工工作量,有效地将卷积神经网络映射到下一代移动和可穿戴设备的节能核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLIW Code Generation for a Convolutional Network Accelerator
This paper presents a compiler flow to map Deep Convolutional Networks (ConvNets) to a highly specialized VLIW accelerator core targeting the low-power embedded market. Earlier works have focused on energy efficient accelerators for this class of algorithms, but none of them provides a complete and practical programming model. Due to the large parameter set of a ConvNet it is essential that the user can abstract from the accelerator architecture and does not have to rely on an error prone and ad-hoc assembly programming model. By using modulo scheduling for software pipelining we demonstrate that our automatic generated code achieves equal or within 5-20% less hardware utilization w.r.t. code written manually by experts. Our compiler removes the huge manual workload to efficiently map ConvNets to an energy-efficient core for the next-generation mobile and wearable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信