一种基于规格化凸周的盲源分离方法

Liu Yang, Hang Zhang, Yang Cai, Liming Hu
{"title":"一种基于规格化凸周的盲源分离方法","authors":"Liu Yang, Hang Zhang, Yang Cai, Liming Hu","doi":"10.1109/ICCChinaW.2018.8674470","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of blind source separation for both independent and dependent sources. Signals in wireless communication system usually own a bounded nature, in view of this observation, a method based on bounded component analysis (BCA) for communication signals separation is proposed. The normalized convex perimeter is adopted as the contrast function and the algorithm is further optimized by a gradient decent algorithm. Experimental results show that the proposed algorithm outperforms the existent BCA algorithms and obtains superior performance over the state of art independent component analysis (ICA)-based algorithms for a small number of samples in high SNR scenarios.","PeriodicalId":201746,"journal":{"name":"2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Blind Source Separation Approach Based on Normalized Convex Perimeter\",\"authors\":\"Liu Yang, Hang Zhang, Yang Cai, Liming Hu\",\"doi\":\"10.1109/ICCChinaW.2018.8674470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of blind source separation for both independent and dependent sources. Signals in wireless communication system usually own a bounded nature, in view of this observation, a method based on bounded component analysis (BCA) for communication signals separation is proposed. The normalized convex perimeter is adopted as the contrast function and the algorithm is further optimized by a gradient decent algorithm. Experimental results show that the proposed algorithm outperforms the existent BCA algorithms and obtains superior performance over the state of art independent component analysis (ICA)-based algorithms for a small number of samples in high SNR scenarios.\",\"PeriodicalId\":201746,\"journal\":{\"name\":\"2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChinaW.2018.8674470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChinaW.2018.8674470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了独立源和依赖源的盲分离问题。鉴于无线通信系统中的信号通常具有有界性,提出了一种基于有界分量分析(BCA)的通信信号分离方法。采用归一化凸周长作为对比函数,并采用梯度体面算法对算法进行进一步优化。实验结果表明,在高信噪比场景下,该算法优于现有的BCA算法,在小样本情况下的性能优于目前基于独立分量分析(ICA)的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Blind Source Separation Approach Based on Normalized Convex Perimeter
This paper addresses the problem of blind source separation for both independent and dependent sources. Signals in wireless communication system usually own a bounded nature, in view of this observation, a method based on bounded component analysis (BCA) for communication signals separation is proposed. The normalized convex perimeter is adopted as the contrast function and the algorithm is further optimized by a gradient decent algorithm. Experimental results show that the proposed algorithm outperforms the existent BCA algorithms and obtains superior performance over the state of art independent component analysis (ICA)-based algorithms for a small number of samples in high SNR scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信