使用可变规则库改进Sugeno模糊推理系统的进化训练

Christopher G. Coy, D. Kaur
{"title":"使用可变规则库改进Sugeno模糊推理系统的进化训练","authors":"Christopher G. Coy, D. Kaur","doi":"10.1109/NAFIPS.2010.5548262","DOIUrl":null,"url":null,"abstract":"The accurate modeling of a time series using a Sugeno Fuzzy Inference System (FIS) requires an algorithm that can train the FIS to minimize the error of seen and unseen data points. Many researchers have used genetic algorithms to optimize the parameters of the FIS membership functions with a great deal of success. It is presented here that incorporating FIS structure identification into the training process can greatly improve accuracy of predicting future time series data, by using the well-known Mackey-Glass time series as a benchmark. The main structural identification consists of optimizing the number of membership functions per input and total number of rules in the rule base.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving evolutionary training for Sugeno Fuzzy Inference Systems using a Mutable Rule Base\",\"authors\":\"Christopher G. Coy, D. Kaur\",\"doi\":\"10.1109/NAFIPS.2010.5548262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate modeling of a time series using a Sugeno Fuzzy Inference System (FIS) requires an algorithm that can train the FIS to minimize the error of seen and unseen data points. Many researchers have used genetic algorithms to optimize the parameters of the FIS membership functions with a great deal of success. It is presented here that incorporating FIS structure identification into the training process can greatly improve accuracy of predicting future time series data, by using the well-known Mackey-Glass time series as a benchmark. The main structural identification consists of optimizing the number of membership functions per input and total number of rules in the rule base.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

使用Sugeno模糊推理系统(FIS)对时间序列进行精确建模需要一种算法,该算法可以训练FIS以最小化可见和未见数据点的误差。许多研究者利用遗传算法对FIS隶属函数的参数进行了优化,并取得了很大的成功。本文提出,以著名的麦基-格拉斯时间序列为基准,将FIS结构识别纳入训练过程可以大大提高预测未来时间序列数据的准确性。主要的结构识别包括优化每个输入的隶属函数的数量和规则库中规则的总数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving evolutionary training for Sugeno Fuzzy Inference Systems using a Mutable Rule Base
The accurate modeling of a time series using a Sugeno Fuzzy Inference System (FIS) requires an algorithm that can train the FIS to minimize the error of seen and unseen data points. Many researchers have used genetic algorithms to optimize the parameters of the FIS membership functions with a great deal of success. It is presented here that incorporating FIS structure identification into the training process can greatly improve accuracy of predicting future time series data, by using the well-known Mackey-Glass time series as a benchmark. The main structural identification consists of optimizing the number of membership functions per input and total number of rules in the rule base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信