可取消生物特征认证的深度人脸图像检索

Young Kyun Jang, N. Cho
{"title":"可取消生物特征认证的深度人脸图像检索","authors":"Young Kyun Jang, N. Cho","doi":"10.1109/AVSS.2019.8909878","DOIUrl":null,"url":null,"abstract":"This paper presents a cancelable biometric system for face authentication by exploiting the convolutional neural network (CNN)-based face image retrieval system. For the cancelable biometrics we must build a template that achieves good performance while maintaining some essential conditions. First the same template should not be used in different applications. Second if the compromise event occurs original biometric data should not be retrieved from the template. Last the template should be easily discarded and recreated. Hence we propose a Deep Table-based Hashing (DTH) framework that encodes CNN-based features into a binary code by utilizing the index of the hashing table. We employ noise embedding and intra-normalization that distorts biometric data which enhances the non-invertibility. For training we propose a new segment-clustering loss and pairwise Hamming loss with two classification losses. The final authentication results are obtained by voting on the outcome of the retrieval system. Experiments conducted on two large scale face image datasets demonstrate that the proposed method works as a proper cancelable biometric system.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deep Face Image Retrieval for Cancelable Biometric Authentication\",\"authors\":\"Young Kyun Jang, N. Cho\",\"doi\":\"10.1109/AVSS.2019.8909878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a cancelable biometric system for face authentication by exploiting the convolutional neural network (CNN)-based face image retrieval system. For the cancelable biometrics we must build a template that achieves good performance while maintaining some essential conditions. First the same template should not be used in different applications. Second if the compromise event occurs original biometric data should not be retrieved from the template. Last the template should be easily discarded and recreated. Hence we propose a Deep Table-based Hashing (DTH) framework that encodes CNN-based features into a binary code by utilizing the index of the hashing table. We employ noise embedding and intra-normalization that distorts biometric data which enhances the non-invertibility. For training we propose a new segment-clustering loss and pairwise Hamming loss with two classification losses. The final authentication results are obtained by voting on the outcome of the retrieval system. Experiments conducted on two large scale face image datasets demonstrate that the proposed method works as a proper cancelable biometric system.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

利用卷积神经网络(CNN)的人脸图像检索系统,提出了一种可取消的人脸认证生物识别系统。对于可取消的生物特征,我们必须构建一个模板,在保持一些基本条件的同时实现良好的性能。首先,同一个模板不应该在不同的应用程序中使用。其次,如果泄露事件发生,原始生物识别数据不应该从模板中检索。最后,模板应该很容易丢弃和重新创建。因此,我们提出了一个基于深度表的哈希(DTH)框架,该框架利用哈希表的索引将基于cnn的特征编码为二进制代码。我们采用噪声嵌入和内部归一化来扭曲生物特征数据,从而增强其不可逆性。对于训练,我们提出了一种新的分段聚类损失和两两汉明损失。对检索系统的结果进行投票,得到最终的认证结果。在两个大型人脸图像数据集上进行的实验表明,该方法是一种合适的可取消生物识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Face Image Retrieval for Cancelable Biometric Authentication
This paper presents a cancelable biometric system for face authentication by exploiting the convolutional neural network (CNN)-based face image retrieval system. For the cancelable biometrics we must build a template that achieves good performance while maintaining some essential conditions. First the same template should not be used in different applications. Second if the compromise event occurs original biometric data should not be retrieved from the template. Last the template should be easily discarded and recreated. Hence we propose a Deep Table-based Hashing (DTH) framework that encodes CNN-based features into a binary code by utilizing the index of the hashing table. We employ noise embedding and intra-normalization that distorts biometric data which enhances the non-invertibility. For training we propose a new segment-clustering loss and pairwise Hamming loss with two classification losses. The final authentication results are obtained by voting on the outcome of the retrieval system. Experiments conducted on two large scale face image datasets demonstrate that the proposed method works as a proper cancelable biometric system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信