基于时滞神经网络的铁路道岔故障预测

Halis Yilboga, O. Eker, Adem Guclu, F. Camci
{"title":"基于时滞神经网络的铁路道岔故障预测","authors":"Halis Yilboga, O. Eker, Adem Guclu, F. Camci","doi":"10.1109/CIMSA.2010.5611756","DOIUrl":null,"url":null,"abstract":"Turnout systems on railways play critical role on reliability of railway infrastructure. Identification and prediction of failures on mechanical systems have been attracting researchers and industry in recent years. Condition based maintenance focuses on failure identification and prediction using sensory information collected real-time from sensors embedded on electro-mechanical systems. This paper presents neural network based failure prediction algorithm on railway turnouts.","PeriodicalId":162890,"journal":{"name":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Failure prediction on railway turnouts using time delay neural networks\",\"authors\":\"Halis Yilboga, O. Eker, Adem Guclu, F. Camci\",\"doi\":\"10.1109/CIMSA.2010.5611756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turnout systems on railways play critical role on reliability of railway infrastructure. Identification and prediction of failures on mechanical systems have been attracting researchers and industry in recent years. Condition based maintenance focuses on failure identification and prediction using sensory information collected real-time from sensors embedded on electro-mechanical systems. This paper presents neural network based failure prediction algorithm on railway turnouts.\",\"PeriodicalId\":162890,\"journal\":{\"name\":\"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2010.5611756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2010.5611756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

铁路道岔系统对铁路基础设施的可靠性起着至关重要的作用。近年来,机械系统故障的识别和预测一直是研究人员和工业界关注的热点。基于状态的维护侧重于使用嵌入在机电系统中的传感器实时收集的传感信息来识别和预测故障。提出了基于神经网络的铁路道岔故障预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure prediction on railway turnouts using time delay neural networks
Turnout systems on railways play critical role on reliability of railway infrastructure. Identification and prediction of failures on mechanical systems have been attracting researchers and industry in recent years. Condition based maintenance focuses on failure identification and prediction using sensory information collected real-time from sensors embedded on electro-mechanical systems. This paper presents neural network based failure prediction algorithm on railway turnouts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信