基于多目标优化的隐马尔可夫模型判别训练

Jong-Seok Lee, C. Park
{"title":"基于多目标优化的隐马尔可夫模型判别训练","authors":"Jong-Seok Lee, C. Park","doi":"10.1109/IJCNN.2005.1556216","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel discriminative training algorithm of hidden Markov models (HMMs) based on the multiobjective optimization for visual speech recognition. We develop a new criterion composed of two minimization objectives for training HMMs discriminatively and a global multiobjective optimization algorithm based on the simulated annealing algorithm to find the Pareto solutions of the optimization problem. We demonstrate the effectiveness of the proposed method via an isolated digit recognition experiment. The results show that the proposed method is superior to the conventional maximum likelihood estimation and the popular discriminative training algorithms.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Discriminative training of hidden Markov models by multiobjective optimization for visual speech recognition\",\"authors\":\"Jong-Seok Lee, C. Park\",\"doi\":\"10.1109/IJCNN.2005.1556216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel discriminative training algorithm of hidden Markov models (HMMs) based on the multiobjective optimization for visual speech recognition. We develop a new criterion composed of two minimization objectives for training HMMs discriminatively and a global multiobjective optimization algorithm based on the simulated annealing algorithm to find the Pareto solutions of the optimization problem. We demonstrate the effectiveness of the proposed method via an isolated digit recognition experiment. The results show that the proposed method is superior to the conventional maximum likelihood estimation and the popular discriminative training algorithms.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于多目标优化的隐马尔可夫模型判别训练算法,用于视觉语音识别。提出了一种由两个最小化目标组成的判别训练hmm准则和一种基于模拟退火算法的全局多目标优化算法,用于求解优化问题的Pareto解。我们通过一个孤立的数字识别实验证明了该方法的有效性。结果表明,该方法优于传统的极大似然估计和流行的判别训练算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative training of hidden Markov models by multiobjective optimization for visual speech recognition
This paper proposes a novel discriminative training algorithm of hidden Markov models (HMMs) based on the multiobjective optimization for visual speech recognition. We develop a new criterion composed of two minimization objectives for training HMMs discriminatively and a global multiobjective optimization algorithm based on the simulated annealing algorithm to find the Pareto solutions of the optimization problem. We demonstrate the effectiveness of the proposed method via an isolated digit recognition experiment. The results show that the proposed method is superior to the conventional maximum likelihood estimation and the popular discriminative training algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信