Meng Wang, Xiansheng Hua, Yan Song, Lirong Dai, HongJiang Zhang
{"title":"半监督核回归","authors":"Meng Wang, Xiansheng Hua, Yan Song, Lirong Dai, HongJiang Zhang","doi":"10.1109/ICDM.2006.143","DOIUrl":null,"url":null,"abstract":"Insufficiency of training data is a major obstacle in machine learning and data mining applications. Many different semi-supervised learning algorithms have been proposed to tackle this difficulty by leveraging a large amount of unlabeled data. However, most of them focus on semi-supervised classification. In this paper we propose a semi-supervised regression algorithm named semi-supervised kernel regression (SSKR). While classical kernel regression is only based on labeled examples, our approach extends it to all observed examples using a weighting factor to modulate the effect of unlabeled examples. Experimental results prove that SSKR significantly outperforms traditional kernel regression and graph-based semi-supervised regression methods.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Semi-Supervised Kernel Regression\",\"authors\":\"Meng Wang, Xiansheng Hua, Yan Song, Lirong Dai, HongJiang Zhang\",\"doi\":\"10.1109/ICDM.2006.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insufficiency of training data is a major obstacle in machine learning and data mining applications. Many different semi-supervised learning algorithms have been proposed to tackle this difficulty by leveraging a large amount of unlabeled data. However, most of them focus on semi-supervised classification. In this paper we propose a semi-supervised regression algorithm named semi-supervised kernel regression (SSKR). While classical kernel regression is only based on labeled examples, our approach extends it to all observed examples using a weighting factor to modulate the effect of unlabeled examples. Experimental results prove that SSKR significantly outperforms traditional kernel regression and graph-based semi-supervised regression methods.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Insufficiency of training data is a major obstacle in machine learning and data mining applications. Many different semi-supervised learning algorithms have been proposed to tackle this difficulty by leveraging a large amount of unlabeled data. However, most of them focus on semi-supervised classification. In this paper we propose a semi-supervised regression algorithm named semi-supervised kernel regression (SSKR). While classical kernel regression is only based on labeled examples, our approach extends it to all observed examples using a weighting factor to modulate the effect of unlabeled examples. Experimental results prove that SSKR significantly outperforms traditional kernel regression and graph-based semi-supervised regression methods.