财富分配上尾的估计方法

S. Toussaint
{"title":"财富分配上尾的估计方法","authors":"S. Toussaint","doi":"10.2139/ssrn.3754363","DOIUrl":null,"url":null,"abstract":"This paper investigates methods to estimate the upper tail of the wealth distribution. I compare data types and estimation methods using data from the Netherlands for the period 1993–2018, exploiting the unique availability of multiple types of data for this context. In addition to comparing the existing methods of OLS regression, Maximum Likelihood, and Generalized Pareto interpolation, I develop a new method to combine data from several sources. This method, called Robust Pareto Regression, combines local estimates of wealth concentration from individual data sources, and uses fixed effects methods to correct for the heterogeneity across data sources and years. Several conclusions emerge: (i) No data source on its own accurately captures the top tail, meaning that all sources need to be adjusted or combined to estimate top wealth. (ii) Combining surveys with rich lists is highly sensitive to the quality of the underlying data sources; generalized Pareto interpolation partly addresses this concern, but straight Pareto regression and Maximum Likelihood methods do not. (iii) Robust Pareto Regression is preferable to existing methods, since it more adequately adjusts for data heterogeneity, and easily shows trends over time.","PeriodicalId":155479,"journal":{"name":"Econometric Modeling: Macroeconomics eJournal","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation Methods for the Upper Tail of the Wealth Distribution\",\"authors\":\"S. Toussaint\",\"doi\":\"10.2139/ssrn.3754363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates methods to estimate the upper tail of the wealth distribution. I compare data types and estimation methods using data from the Netherlands for the period 1993–2018, exploiting the unique availability of multiple types of data for this context. In addition to comparing the existing methods of OLS regression, Maximum Likelihood, and Generalized Pareto interpolation, I develop a new method to combine data from several sources. This method, called Robust Pareto Regression, combines local estimates of wealth concentration from individual data sources, and uses fixed effects methods to correct for the heterogeneity across data sources and years. Several conclusions emerge: (i) No data source on its own accurately captures the top tail, meaning that all sources need to be adjusted or combined to estimate top wealth. (ii) Combining surveys with rich lists is highly sensitive to the quality of the underlying data sources; generalized Pareto interpolation partly addresses this concern, but straight Pareto regression and Maximum Likelihood methods do not. (iii) Robust Pareto Regression is preferable to existing methods, since it more adequately adjusts for data heterogeneity, and easily shows trends over time.\",\"PeriodicalId\":155479,\"journal\":{\"name\":\"Econometric Modeling: Macroeconomics eJournal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Macroeconomics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3754363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Macroeconomics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3754363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了估计财富分配上尾的方法。我使用荷兰1993-2018年期间的数据比较了数据类型和估计方法,并利用了这一背景下多种类型数据的独特可用性。除了比较现有的OLS回归、极大似然和广义Pareto插值方法外,我还开发了一种新的方法来组合来自多个来源的数据。这种方法被称为稳健帕累托回归,它结合了来自各个数据源的财富集中的本地估计,并使用固定效应方法来纠正数据源和年份之间的异质性。得出了几个结论:(i)没有任何数据来源本身能准确地捕捉到顶尾,这意味着需要调整或合并所有数据来源来估计最高财富。将调查与富人名单结合起来对基础数据来源的质量高度敏感;广义帕累托插值部分解决了这个问题,但直接帕累托回归和最大似然方法没有。(iii)稳健帕累托回归优于现有方法,因为它更充分地调整数据异质性,并容易显示随时间的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation Methods for the Upper Tail of the Wealth Distribution
This paper investigates methods to estimate the upper tail of the wealth distribution. I compare data types and estimation methods using data from the Netherlands for the period 1993–2018, exploiting the unique availability of multiple types of data for this context. In addition to comparing the existing methods of OLS regression, Maximum Likelihood, and Generalized Pareto interpolation, I develop a new method to combine data from several sources. This method, called Robust Pareto Regression, combines local estimates of wealth concentration from individual data sources, and uses fixed effects methods to correct for the heterogeneity across data sources and years. Several conclusions emerge: (i) No data source on its own accurately captures the top tail, meaning that all sources need to be adjusted or combined to estimate top wealth. (ii) Combining surveys with rich lists is highly sensitive to the quality of the underlying data sources; generalized Pareto interpolation partly addresses this concern, but straight Pareto regression and Maximum Likelihood methods do not. (iii) Robust Pareto Regression is preferable to existing methods, since it more adequately adjusts for data heterogeneity, and easily shows trends over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信