基于人工神经网络理论LM算法的风力发电机组故障预测诊断

Lincang Ju, Dekuan Song, Beibei Shi, Qiang Zhao
{"title":"基于人工神经网络理论LM算法的风力发电机组故障预测诊断","authors":"Lincang Ju, Dekuan Song, Beibei Shi, Qiang Zhao","doi":"10.1109/ICNC.2011.6021921","DOIUrl":null,"url":null,"abstract":"This paper analyses the main fault factors on wind turbine, and presents three general faults: gear box fault, leeway system fault and generator fault. After the analysis and research of the basic principle of Back-Propagation Neural Network based on LM arithmetic, a three-layer Back-Propagation Network faults predictive diagnosis model is built. Data from two wind turbines are used to test the effectiveness of this method.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fault predictive diagnosis of wind turbine based on LM arithmetic of Artificial Neural Network theory\",\"authors\":\"Lincang Ju, Dekuan Song, Beibei Shi, Qiang Zhao\",\"doi\":\"10.1109/ICNC.2011.6021921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the main fault factors on wind turbine, and presents three general faults: gear box fault, leeway system fault and generator fault. After the analysis and research of the basic principle of Back-Propagation Neural Network based on LM arithmetic, a three-layer Back-Propagation Network faults predictive diagnosis model is built. Data from two wind turbines are used to test the effectiveness of this method.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6021921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6021921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分析了风力发电机组的主要故障因素,提出了三种常见故障:齿轮箱故障、回旋系统故障和发电机故障。在分析研究了基于LM算法的反向传播神经网络的基本原理后,建立了三层的反向传播网络故障预测诊断模型。两个风力涡轮机的数据被用来测试该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault predictive diagnosis of wind turbine based on LM arithmetic of Artificial Neural Network theory
This paper analyses the main fault factors on wind turbine, and presents three general faults: gear box fault, leeway system fault and generator fault. After the analysis and research of the basic principle of Back-Propagation Neural Network based on LM arithmetic, a three-layer Back-Propagation Network faults predictive diagnosis model is built. Data from two wind turbines are used to test the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信