利用遗传算法优化污染气体模拟红外光谱识别系统

Li Meijuan, Y. Shuai, Jing Lei, Zhang Jun
{"title":"利用遗传算法优化污染气体模拟红外光谱识别系统","authors":"Li Meijuan, Y. Shuai, Jing Lei, Zhang Jun","doi":"10.1109/ISDEA.2012.523","DOIUrl":null,"url":null,"abstract":"A new method that the hidden nodes of the neural network are chosen by the genetic algorithm is proposed in this paper. The experimental results show that the appropriate hidden nodes can be selected by the genetic algorithm, and the results from the identification indicate that the system is quite efficient for identifying multi-objective polluted infrared spectra.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimization for Identification System of the Simulated Infrared Spectra of Polluted Gasses Using Genetic Algorithm\",\"authors\":\"Li Meijuan, Y. Shuai, Jing Lei, Zhang Jun\",\"doi\":\"10.1109/ISDEA.2012.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method that the hidden nodes of the neural network are chosen by the genetic algorithm is proposed in this paper. The experimental results show that the appropriate hidden nodes can be selected by the genetic algorithm, and the results from the identification indicate that the system is quite efficient for identifying multi-objective polluted infrared spectra.\",\"PeriodicalId\":267532,\"journal\":{\"name\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDEA.2012.523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用遗传算法选择神经网络隐节点的新方法。实验结果表明,遗传算法可以选择合适的隐藏节点,识别结果表明,该系统对多目标污染红外光谱的识别效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimization for Identification System of the Simulated Infrared Spectra of Polluted Gasses Using Genetic Algorithm
A new method that the hidden nodes of the neural network are chosen by the genetic algorithm is proposed in this paper. The experimental results show that the appropriate hidden nodes can be selected by the genetic algorithm, and the results from the identification indicate that the system is quite efficient for identifying multi-objective polluted infrared spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信