编织和映射类群的最小非循环商

S. Kolay
{"title":"编织和映射类群的最小非循环商","authors":"S. Kolay","doi":"10.2140/gt.2023.27.2479","DOIUrl":null,"url":null,"abstract":"We show that the smallest non-cyclic quotients of braid groups are symmetric groups, proving a conjecture of Margalit. Moreover we recover results of Artin and Lin about the classification of homomorphisms from braid groups on n strands to symmetric groups on k letters, where k is at most n. Unlike the original proofs, our method does not use the Bertrand-Chebyshev theorem, answering a question of Artin. Similarly for mapping class group of closed orientable surfaces, the smallest non-cyclic quotient is given by the mod two reduction of the symplectic representation. We provide an elementary proof of this result, originally due to Kielak-Pierro, which proves a conjecture of Zimmermann.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Smallest noncyclic quotients of braid and mapping class groups\",\"authors\":\"S. Kolay\",\"doi\":\"10.2140/gt.2023.27.2479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the smallest non-cyclic quotients of braid groups are symmetric groups, proving a conjecture of Margalit. Moreover we recover results of Artin and Lin about the classification of homomorphisms from braid groups on n strands to symmetric groups on k letters, where k is at most n. Unlike the original proofs, our method does not use the Bertrand-Chebyshev theorem, answering a question of Artin. Similarly for mapping class group of closed orientable surfaces, the smallest non-cyclic quotient is given by the mod two reduction of the symplectic representation. We provide an elementary proof of this result, originally due to Kielak-Pierro, which proves a conjecture of Zimmermann.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.2479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

证明了编织群的最小非循环商是对称群,证明了Margalit的一个猜想。此外,我们恢复了Artin和Lin关于从n条链上的编织群到k个字母上的对称群的同态分类的结果,其中k最大为n。与原始证明不同,我们的方法不使用Bertrand-Chebyshev定理,回答了Artin的一个问题。同样地,对于映射类群的闭可定向曲面,最小的非循环商由辛表示的模二化得到。我们给出了这个结果的初等证明,它证明了齐默尔曼的一个猜想,最初是由Kielak-Pierro给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smallest noncyclic quotients of braid and mapping class groups
We show that the smallest non-cyclic quotients of braid groups are symmetric groups, proving a conjecture of Margalit. Moreover we recover results of Artin and Lin about the classification of homomorphisms from braid groups on n strands to symmetric groups on k letters, where k is at most n. Unlike the original proofs, our method does not use the Bertrand-Chebyshev theorem, answering a question of Artin. Similarly for mapping class group of closed orientable surfaces, the smallest non-cyclic quotient is given by the mod two reduction of the symplectic representation. We provide an elementary proof of this result, originally due to Kielak-Pierro, which proves a conjecture of Zimmermann.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信