具有位置和方向控制的磁悬浮系统的研制

Siti Juliana Abu Bakar, Koay J-Shenn, P. Goh, N. S. Ahmad
{"title":"具有位置和方向控制的磁悬浮系统的研制","authors":"Siti Juliana Abu Bakar, Koay J-Shenn, P. Goh, N. S. Ahmad","doi":"10.11591/ijres.v12.i2.pp287-296","DOIUrl":null,"url":null,"abstract":"This work demonstrates the design and development of a magnetic levitation (MagLev) system that is able to control both the position and orientation of the levitated object. For the position control, a pole placement method was exploited to estimate parameters of the proportional integral derivative (PID) controller. In addition, the MagLev was constructed using a pair of electromagnets, two infrared (IR) receiver-emitter pairs and a servo motor to allow the orientation of the object to be controlled. The proposed controller was programmed in a LabVIEW environment, which was then compiled and deployed into an embedded NI myRIO board. Experimental results demonstrated that the proposed method was able to achieve a zero steady-state orientation error when the object was rotated from 0 ◦ to ±90◦ , a steady-state position error of 0.3 cm without rotation, and steady-state position errors of no greater than 1.2 cm with rotation.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of magnetic levitation system with position and orientation control\",\"authors\":\"Siti Juliana Abu Bakar, Koay J-Shenn, P. Goh, N. S. Ahmad\",\"doi\":\"10.11591/ijres.v12.i2.pp287-296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates the design and development of a magnetic levitation (MagLev) system that is able to control both the position and orientation of the levitated object. For the position control, a pole placement method was exploited to estimate parameters of the proportional integral derivative (PID) controller. In addition, the MagLev was constructed using a pair of electromagnets, two infrared (IR) receiver-emitter pairs and a servo motor to allow the orientation of the object to be controlled. The proposed controller was programmed in a LabVIEW environment, which was then compiled and deployed into an embedded NI myRIO board. Experimental results demonstrated that the proposed method was able to achieve a zero steady-state orientation error when the object was rotated from 0 ◦ to ±90◦ , a steady-state position error of 0.3 cm without rotation, and steady-state position errors of no greater than 1.2 cm with rotation.\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v12.i2.pp287-296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v12.i2.pp287-296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作演示了磁悬浮系统的设计和开发,该系统能够控制悬浮物体的位置和方向。对于位置控制,采用极点放置法估计比例积分导数(PID)控制器的参数。此外,磁悬浮列车由一对电磁铁、两对红外接收器-发射器和一个伺服电机组成,以控制物体的方向。提出的控制器在LabVIEW环境下编程,然后编译并部署到嵌入式NI myRIO板中。实验结果表明,该方法可实现物体从0◦到±90◦旋转时的稳态定位误差为零,不旋转时的稳态位置误差为0.3 cm,旋转时的稳态位置误差不大于1.2 cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of magnetic levitation system with position and orientation control
This work demonstrates the design and development of a magnetic levitation (MagLev) system that is able to control both the position and orientation of the levitated object. For the position control, a pole placement method was exploited to estimate parameters of the proportional integral derivative (PID) controller. In addition, the MagLev was constructed using a pair of electromagnets, two infrared (IR) receiver-emitter pairs and a servo motor to allow the orientation of the object to be controlled. The proposed controller was programmed in a LabVIEW environment, which was then compiled and deployed into an embedded NI myRIO board. Experimental results demonstrated that the proposed method was able to achieve a zero steady-state orientation error when the object was rotated from 0 ◦ to ±90◦ , a steady-state position error of 0.3 cm without rotation, and steady-state position errors of no greater than 1.2 cm with rotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信