机会感测:使用众包模型选择无人值守声学传感器

Po-Sen Huang, M. Hasegawa-Johnson, W. Yin, Thomas S. Huang
{"title":"机会感测:使用众包模型选择无人值守声学传感器","authors":"Po-Sen Huang, M. Hasegawa-Johnson, W. Yin, Thomas S. Huang","doi":"10.1109/MLSP.2012.6349815","DOIUrl":null,"url":null,"abstract":"Unattended wireless sensor networks have been widely used in many applications. This paper proposes automatic sensor selection methods based on crowdsourcing models in the Opportunistic Sensing framework, with applications to unattended acoustic sensor selection. Precisely, we propose two sensor selection criteria and solve them via greedy algorithm and quadratic assignment. Our proposed method achieves, on average, 5.64% higher accuracy than the traditional approach under sparse reliability conditions.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Opportunistic sensing: Unattended acoustic sensor selection using crowdsourcing models\",\"authors\":\"Po-Sen Huang, M. Hasegawa-Johnson, W. Yin, Thomas S. Huang\",\"doi\":\"10.1109/MLSP.2012.6349815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unattended wireless sensor networks have been widely used in many applications. This paper proposes automatic sensor selection methods based on crowdsourcing models in the Opportunistic Sensing framework, with applications to unattended acoustic sensor selection. Precisely, we propose two sensor selection criteria and solve them via greedy algorithm and quadratic assignment. Our proposed method achieves, on average, 5.64% higher accuracy than the traditional approach under sparse reliability conditions.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无人值守无线传感器网络已广泛应用于许多领域。本文提出了机会感知框架下基于众包模型的传感器自动选择方法,并将其应用于无人值守声学传感器的选择。具体地说,我们提出了两个传感器选择准则,并通过贪心算法和二次分配算法进行求解。在稀疏可靠性条件下,该方法的准确率比传统方法平均提高了5.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opportunistic sensing: Unattended acoustic sensor selection using crowdsourcing models
Unattended wireless sensor networks have been widely used in many applications. This paper proposes automatic sensor selection methods based on crowdsourcing models in the Opportunistic Sensing framework, with applications to unattended acoustic sensor selection. Precisely, we propose two sensor selection criteria and solve them via greedy algorithm and quadratic assignment. Our proposed method achieves, on average, 5.64% higher accuracy than the traditional approach under sparse reliability conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信