结晶岩水力增产过程中裂缝中的热传播

Q. Wenning, N. Gholizadeh Doonechaly, A. Shakas, F. Serbeto, F. Bethmann, B. Dyer, R. Castilla, P. Meier, M. Hertrich, H. Maurer, D. Giardini, S. Wiemer
{"title":"结晶岩水力增产过程中裂缝中的热传播","authors":"Q. Wenning, N. Gholizadeh Doonechaly, A. Shakas, F. Serbeto, F. Bethmann, B. Dyer, R. Castilla, P. Meier, M. Hertrich, H. Maurer, D. Giardini, S. Wiemer","doi":"10.56952/arma-2022-0381","DOIUrl":null,"url":null,"abstract":"The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) is located in central Switzerland and serves as a test bed for geothermal energy research. Several boreholes were drilled from the laboratory section (ca. 1.1 km overburden) to serve as injection boreholes for stimulation and geophysical monitoring boreholes. During a hydraulic stimulation injection in winter 2020 into injection borehole ST2 interval ranging from 313 to 320 m, we observe a thermal perturbation using distributed fiber optic temperature sensing in a neighboring open borehole (MB1) at a depth of 275 m to 295 m. Prior to injection, there is a thermal anomaly in MB1 at about 289 m due to natural fracture fluid flow. Below this depth the temperature is approximately 1.5 °C higher than above. During injection there is a gradual upward movement of the thermal anomaly to ca. 278 m depth. After injection is stopped, the thermal signal gradually recovers to the original depth. The cause for such a temperature change is potentially due to increased warm water flow reaching the base of MB1 from deeper ST2 or poro-elastic fracture closure of the cold-water conducting fractures at 278 and 289 m depth in MB1 during stimulation.","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat propagation through fractures during hydraulic stimulation in crystalline rock\",\"authors\":\"Q. Wenning, N. Gholizadeh Doonechaly, A. Shakas, F. Serbeto, F. Bethmann, B. Dyer, R. Castilla, P. Meier, M. Hertrich, H. Maurer, D. Giardini, S. Wiemer\",\"doi\":\"10.56952/arma-2022-0381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) is located in central Switzerland and serves as a test bed for geothermal energy research. Several boreholes were drilled from the laboratory section (ca. 1.1 km overburden) to serve as injection boreholes for stimulation and geophysical monitoring boreholes. During a hydraulic stimulation injection in winter 2020 into injection borehole ST2 interval ranging from 313 to 320 m, we observe a thermal perturbation using distributed fiber optic temperature sensing in a neighboring open borehole (MB1) at a depth of 275 m to 295 m. Prior to injection, there is a thermal anomaly in MB1 at about 289 m due to natural fracture fluid flow. Below this depth the temperature is approximately 1.5 °C higher than above. During injection there is a gradual upward movement of the thermal anomaly to ca. 278 m depth. After injection is stopped, the thermal signal gradually recovers to the original depth. The cause for such a temperature change is potentially due to increased warm water flow reaching the base of MB1 from deeper ST2 or poro-elastic fracture closure of the cold-water conducting fractures at 278 and 289 m depth in MB1 during stimulation.\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-0381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-0381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bedretto地下地球科学和地球能源实验室(BULGG)位于瑞士中部,是地热能研究的试验台。从实验室段(约1.1公里覆盖层)钻了几个钻孔,作为注入钻孔,用于增产和地球物理监测钻孔。在2020年冬季对ST2注入井眼313 ~ 320 m进行水力增产注入期间,我们在邻近的275 ~ 295 m的裸眼井眼(MB1)中使用分布式光纤温度传感观察到热扰动。在注入之前,由于天然压裂液的流动,MB1在289 m处存在热异常。在此深度以下的温度比上面的温度高约1.5°C。在注入过程中,热异常逐渐向上移动至约278 m深度。停止注入后,热信号逐渐恢复到原始深度。造成这种温度变化的原因可能是由于增产期间,从更深的ST2到达MB1底部的温水流量增加,或者是MB1中278和289 m深度的冷水传导裂缝的孔隙弹性裂缝闭合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat propagation through fractures during hydraulic stimulation in crystalline rock
The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) is located in central Switzerland and serves as a test bed for geothermal energy research. Several boreholes were drilled from the laboratory section (ca. 1.1 km overburden) to serve as injection boreholes for stimulation and geophysical monitoring boreholes. During a hydraulic stimulation injection in winter 2020 into injection borehole ST2 interval ranging from 313 to 320 m, we observe a thermal perturbation using distributed fiber optic temperature sensing in a neighboring open borehole (MB1) at a depth of 275 m to 295 m. Prior to injection, there is a thermal anomaly in MB1 at about 289 m due to natural fracture fluid flow. Below this depth the temperature is approximately 1.5 °C higher than above. During injection there is a gradual upward movement of the thermal anomaly to ca. 278 m depth. After injection is stopped, the thermal signal gradually recovers to the original depth. The cause for such a temperature change is potentially due to increased warm water flow reaching the base of MB1 from deeper ST2 or poro-elastic fracture closure of the cold-water conducting fractures at 278 and 289 m depth in MB1 during stimulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信