{"title":"污染非等温变黏度多孔介质流动的有限差分研究","authors":"C. Nwaigwe, O. Makinde","doi":"10.4028/www.scientific.net/DF.26.145","DOIUrl":null,"url":null,"abstract":"We extend previous studies of channel flows to porous media flows with combined effects ofboth heat and mass transfer. We consider a temperaturedependent viscosity fluid and a concentrationdependent diffusivity in an unsteady and pressuredriven nonisothermal Brinkman flow. This leads to the governing equations for velocity, concentration and temperature. By lagging nonlinear coefficients, in time, a convergent finite difference scheme is formulated. We adopt the method of manufactured solutions to verify the convergence and second order spatial accuracy of the scheme. The impact of the flow parameters on the flow fields are numerically investigated. The results show that increase in the Darcy number and temperature parameter both increase the velocity while the increase in the pollutant diffusion parameter decreases the pollutant concentration.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite Difference Investigation of a Polluted Non-Isothermal Variable-Viscosity Porous Media Flow\",\"authors\":\"C. Nwaigwe, O. Makinde\",\"doi\":\"10.4028/www.scientific.net/DF.26.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend previous studies of channel flows to porous media flows with combined effects ofboth heat and mass transfer. We consider a temperaturedependent viscosity fluid and a concentrationdependent diffusivity in an unsteady and pressuredriven nonisothermal Brinkman flow. This leads to the governing equations for velocity, concentration and temperature. By lagging nonlinear coefficients, in time, a convergent finite difference scheme is formulated. We adopt the method of manufactured solutions to verify the convergence and second order spatial accuracy of the scheme. The impact of the flow parameters on the flow fields are numerically investigated. The results show that increase in the Darcy number and temperature parameter both increase the velocity while the increase in the pollutant diffusion parameter decreases the pollutant concentration.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.26.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.26.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Difference Investigation of a Polluted Non-Isothermal Variable-Viscosity Porous Media Flow
We extend previous studies of channel flows to porous media flows with combined effects ofboth heat and mass transfer. We consider a temperaturedependent viscosity fluid and a concentrationdependent diffusivity in an unsteady and pressuredriven nonisothermal Brinkman flow. This leads to the governing equations for velocity, concentration and temperature. By lagging nonlinear coefficients, in time, a convergent finite difference scheme is formulated. We adopt the method of manufactured solutions to verify the convergence and second order spatial accuracy of the scheme. The impact of the flow parameters on the flow fields are numerically investigated. The results show that increase in the Darcy number and temperature parameter both increase the velocity while the increase in the pollutant diffusion parameter decreases the pollutant concentration.