模糊图像识别中的部分匹配

Rita Almeida Ribeiro, J. Baldwin
{"title":"模糊图像识别中的部分匹配","authors":"Rita Almeida Ribeiro, J. Baldwin","doi":"10.1109/DMESP.1991.171771","DOIUrl":null,"url":null,"abstract":"The problem of how to build expert systems for recognizing vague or incomplete images is addressed. The focus is on the partial match and estimation of supports, per degree of similarity, of each possible option. Two methods were used: a voting model interpretation of fuzzy sets to classify the objects, and the iterative assignment algorithm to obtain the support. To test the learning capabilities of this approach, an example of upper case letters was implemented.<<ETX>>","PeriodicalId":117336,"journal":{"name":"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Partial matching in fuzzy image recognition\",\"authors\":\"Rita Almeida Ribeiro, J. Baldwin\",\"doi\":\"10.1109/DMESP.1991.171771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of how to build expert systems for recognizing vague or incomplete images is addressed. The focus is on the partial match and estimation of supports, per degree of similarity, of each possible option. Two methods were used: a voting model interpretation of fuzzy sets to classify the objects, and the iterative assignment algorithm to obtain the support. To test the learning capabilities of this approach, an example of upper case letters was implemented.<<ETX>>\",\"PeriodicalId\":117336,\"journal\":{\"name\":\"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMESP.1991.171771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMESP.1991.171771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

解决了如何建立识别模糊或不完整图像的专家系统的问题。重点是每个可能选项的每个相似度的部分匹配和支持度的估计。采用投票模型解释模糊集对目标进行分类,迭代赋值算法获得支持。为了测试这种方法的学习能力,我们实现了一个大写字母的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial matching in fuzzy image recognition
The problem of how to build expert systems for recognizing vague or incomplete images is addressed. The focus is on the partial match and estimation of supports, per degree of similarity, of each possible option. Two methods were used: a voting model interpretation of fuzzy sets to classify the objects, and the iterative assignment algorithm to obtain the support. To test the learning capabilities of this approach, an example of upper case letters was implemented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信