{"title":"使用机器学习模型进行COVID-19未来预测","authors":"H. Awada, Jamal Haydar, A. Mokdad, Ahmad Ghandour","doi":"10.1109/ACIT57182.2022.9994129","DOIUrl":null,"url":null,"abstract":"Covid-19 is a very infectious virus. According to World Health Organization (WHO), millions of individuals have been diagnosed with Covid-19 since then, and at least a million have died as the virus has expanded dramatically. While most of the news on this front is scary, technology is helping to pave the path through this crisis. Manual forecasting is a difficult challenge for humans due to its large scale and complexity. Machine Learning (ML) techniques can effectively predict Covid-19 infected patients. There are a lot of study that have been developed to predict and forecast the future number of cases affected by Covid-19. In this area, our forecasting can be tackled as a problem of supervised learning. Supervised ML is very popular regression methods due to its simplicity to be interpreted by Humans. In this paper, we use two datasets to predict the symptoms through two different types of regression algorithms (single and multiple regression), the ML algorithms are LR, SVM, LASSO, ES and Polynomial regression, for the multiple regression we used LR, SVM and LASSO. The obtained results validate that for the single regression the Exponential Smoothing (ES) outperforms other machine learning approaches like Linear Regression (LR) and LASSO in terms of R-Square, Adjusted R-Square, Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The same accuracy is observed for the models used in the multiple regression.","PeriodicalId":256713,"journal":{"name":"2022 International Arab Conference on Information Technology (ACIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Future Forecasting Using Machine Learning Models\",\"authors\":\"H. Awada, Jamal Haydar, A. Mokdad, Ahmad Ghandour\",\"doi\":\"10.1109/ACIT57182.2022.9994129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covid-19 is a very infectious virus. According to World Health Organization (WHO), millions of individuals have been diagnosed with Covid-19 since then, and at least a million have died as the virus has expanded dramatically. While most of the news on this front is scary, technology is helping to pave the path through this crisis. Manual forecasting is a difficult challenge for humans due to its large scale and complexity. Machine Learning (ML) techniques can effectively predict Covid-19 infected patients. There are a lot of study that have been developed to predict and forecast the future number of cases affected by Covid-19. In this area, our forecasting can be tackled as a problem of supervised learning. Supervised ML is very popular regression methods due to its simplicity to be interpreted by Humans. In this paper, we use two datasets to predict the symptoms through two different types of regression algorithms (single and multiple regression), the ML algorithms are LR, SVM, LASSO, ES and Polynomial regression, for the multiple regression we used LR, SVM and LASSO. The obtained results validate that for the single regression the Exponential Smoothing (ES) outperforms other machine learning approaches like Linear Regression (LR) and LASSO in terms of R-Square, Adjusted R-Square, Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The same accuracy is observed for the models used in the multiple regression.\",\"PeriodicalId\":256713,\"journal\":{\"name\":\"2022 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT57182.2022.9994129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT57182.2022.9994129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COVID-19 Future Forecasting Using Machine Learning Models
Covid-19 is a very infectious virus. According to World Health Organization (WHO), millions of individuals have been diagnosed with Covid-19 since then, and at least a million have died as the virus has expanded dramatically. While most of the news on this front is scary, technology is helping to pave the path through this crisis. Manual forecasting is a difficult challenge for humans due to its large scale and complexity. Machine Learning (ML) techniques can effectively predict Covid-19 infected patients. There are a lot of study that have been developed to predict and forecast the future number of cases affected by Covid-19. In this area, our forecasting can be tackled as a problem of supervised learning. Supervised ML is very popular regression methods due to its simplicity to be interpreted by Humans. In this paper, we use two datasets to predict the symptoms through two different types of regression algorithms (single and multiple regression), the ML algorithms are LR, SVM, LASSO, ES and Polynomial regression, for the multiple regression we used LR, SVM and LASSO. The obtained results validate that for the single regression the Exponential Smoothing (ES) outperforms other machine learning approaches like Linear Regression (LR) and LASSO in terms of R-Square, Adjusted R-Square, Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The same accuracy is observed for the models used in the multiple regression.