非自伴随friedrichs模型算子的一些谱性质

A. Kiselev
{"title":"非自伴随friedrichs模型算子的一些谱性质","authors":"A. Kiselev","doi":"10.3318/PRIA.2005.105.2.25","DOIUrl":null,"url":null,"abstract":"A non-self-adjoint, rank-one Friedrichs model operator in L2(R) is considered in the case where the determinant of perturbation is an outer function in the half-planes C§. Its spectral structure is investigated. The impact of the linear resolvent growth condition on its spectral properties (including the similarity problem) is studied.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SOME SPECTRAL PROPERTIES OF THE NON-SELF-ADJOINT FRIEDRICHS MODEL OPERATOR\",\"authors\":\"A. Kiselev\",\"doi\":\"10.3318/PRIA.2005.105.2.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-self-adjoint, rank-one Friedrichs model operator in L2(R) is considered in the case where the determinant of perturbation is an outer function in the half-planes C§. Its spectral structure is investigated. The impact of the linear resolvent growth condition on its spectral properties (including the similarity problem) is studied.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2005.105.2.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2005.105.2.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

考虑了L2(R)中扰动的行列式为半平面C§上的外函数时的非自伴随的秩一Friedrichs模型算子。研究了其光谱结构。研究了线性溶剂生长条件对其光谱性质(包括相似问题)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME SPECTRAL PROPERTIES OF THE NON-SELF-ADJOINT FRIEDRICHS MODEL OPERATOR
A non-self-adjoint, rank-one Friedrichs model operator in L2(R) is considered in the case where the determinant of perturbation is an outer function in the half-planes C§. Its spectral structure is investigated. The impact of the linear resolvent growth condition on its spectral properties (including the similarity problem) is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信