二次分配问题的遗传杂交

C. Fleurent, J. Ferland
{"title":"二次分配问题的遗传杂交","authors":"C. Fleurent, J. Ferland","doi":"10.1090/dimacs/016/08","DOIUrl":null,"url":null,"abstract":"A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. These hybrid algorithms are then used to improve on the best known solutions of many test problems in the literature.","PeriodicalId":376860,"journal":{"name":"Quadratic Assignment and Related Problems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"277","resultStr":"{\"title\":\"Genetic Hybrids for the Quadratic Assignment Problem\",\"authors\":\"C. Fleurent, J. Ferland\",\"doi\":\"10.1090/dimacs/016/08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. These hybrid algorithms are then used to improve on the best known solutions of many test problems in the literature.\",\"PeriodicalId\":376860,\"journal\":{\"name\":\"Quadratic Assignment and Related Problems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"277\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quadratic Assignment and Related Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/016/08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quadratic Assignment and Related Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/016/08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 277

摘要

针对二次分配问题,提出了一种将遗传算子与现有启发式算法相结合的混合求解方法。提出了一种改进局部搜索和禁忌搜索性能的遗传算子。给出了设计良好混合动力方案的指导原则。然后使用这些混合算法来改进文献中许多测试问题的最知名的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Hybrids for the Quadratic Assignment Problem
A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. These hybrid algorithms are then used to improve on the best known solutions of many test problems in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信