基于空间角和极极联合信息的下采样恢复网络光场视频编码

V. V. Duong, T. N. Huu, Jonghoon Yim, B. Jeon
{"title":"基于空间角和极极联合信息的下采样恢复网络光场视频编码","authors":"V. V. Duong, T. N. Huu, Jonghoon Yim, B. Jeon","doi":"10.1109/ICIP46576.2022.9897948","DOIUrl":null,"url":null,"abstract":"This paper proposes a new downsampling-based light field video coding (D-LFVC) framework whose success relies on how to design an effective restoration method that can remove artifacts brought by both downsampling and compression. Since light field (LF) video is of high dimensionality data, the restoration methods designed for conventional 2D video are sub-optimal solutions for our D-LFVC. In this regard, we design a new restoration network, named \"LF-QEN,\" for our D-LFVC framework. Specifically, the network contains three different feature extractor modules, allowing us to simultaneously exploit information from different kinds of 4D LF representation: spatial, angular, and epipolar image information. Our experimental results show that, compared to compression by HEVC-SCC standard, the proposed framework can obtain not only nearly 50% bitrate savings but also can significantly enhance the quality of decoded LF video.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Downsampling Based Light Field Video Coding with Restoration Network Using Joint Spatio-Angular and Epipolar Information\",\"authors\":\"V. V. Duong, T. N. Huu, Jonghoon Yim, B. Jeon\",\"doi\":\"10.1109/ICIP46576.2022.9897948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new downsampling-based light field video coding (D-LFVC) framework whose success relies on how to design an effective restoration method that can remove artifacts brought by both downsampling and compression. Since light field (LF) video is of high dimensionality data, the restoration methods designed for conventional 2D video are sub-optimal solutions for our D-LFVC. In this regard, we design a new restoration network, named \\\"LF-QEN,\\\" for our D-LFVC framework. Specifically, the network contains three different feature extractor modules, allowing us to simultaneously exploit information from different kinds of 4D LF representation: spatial, angular, and epipolar image information. Our experimental results show that, compared to compression by HEVC-SCC standard, the proposed framework can obtain not only nearly 50% bitrate savings but also can significantly enhance the quality of decoded LF video.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的基于下采样的光场视频编码(D-LFVC)框架,该框架的成功取决于如何设计一种有效的恢复方法来去除下采样和压缩带来的伪影。由于光场(LF)视频是高维数据,针对传统2D视频设计的恢复方法对于我们的D-LFVC来说是次优解。在这方面,我们为我们的D-LFVC框架设计了一个新的恢复网络,命名为“LF-QEN”。具体来说,该网络包含三个不同的特征提取器模块,允许我们同时利用不同类型的4D LF表示信息:空间、角度和极面图像信息。实验结果表明,与HEVC-SCC压缩标准相比,该框架不仅可以节省近50%的比特率,而且可以显著提高LF视频的解码质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downsampling Based Light Field Video Coding with Restoration Network Using Joint Spatio-Angular and Epipolar Information
This paper proposes a new downsampling-based light field video coding (D-LFVC) framework whose success relies on how to design an effective restoration method that can remove artifacts brought by both downsampling and compression. Since light field (LF) video is of high dimensionality data, the restoration methods designed for conventional 2D video are sub-optimal solutions for our D-LFVC. In this regard, we design a new restoration network, named "LF-QEN," for our D-LFVC framework. Specifically, the network contains three different feature extractor modules, allowing us to simultaneously exploit information from different kinds of 4D LF representation: spatial, angular, and epipolar image information. Our experimental results show that, compared to compression by HEVC-SCC standard, the proposed framework can obtain not only nearly 50% bitrate savings but also can significantly enhance the quality of decoded LF video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信