眼球位置跟踪的神经网络方法

B. Wolfe, D. Eichmann
{"title":"眼球位置跟踪的神经网络方法","authors":"B. Wolfe, D. Eichmann","doi":"10.1207/s15327590ijhc0901_4","DOIUrl":null,"url":null,"abstract":"The design of a neural network based eye tracker is presented. A series of experiments with counterpropagation neural networks convert synthetic video images into eye coordinates by an enhanced feed-forward neural network with multiple winning hidden layer nodes. Difficulties encountered during the design process are discussed. The results show that accurate, fine-grained tracking of a human's eye position is possible by processing the video image collected from a goggle-mounted miniature charge-coupled device (CCD) camera.","PeriodicalId":208962,"journal":{"name":"Int. J. Hum. Comput. Interact.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Neural Network Approach to Tracking Eye Position\",\"authors\":\"B. Wolfe, D. Eichmann\",\"doi\":\"10.1207/s15327590ijhc0901_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of a neural network based eye tracker is presented. A series of experiments with counterpropagation neural networks convert synthetic video images into eye coordinates by an enhanced feed-forward neural network with multiple winning hidden layer nodes. Difficulties encountered during the design process are discussed. The results show that accurate, fine-grained tracking of a human's eye position is possible by processing the video image collected from a goggle-mounted miniature charge-coupled device (CCD) camera.\",\"PeriodicalId\":208962,\"journal\":{\"name\":\"Int. J. Hum. Comput. Interact.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Hum. Comput. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1207/s15327590ijhc0901_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Hum. Comput. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1207/s15327590ijhc0901_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

介绍了一种基于神经网络的眼动仪的设计。反传播神经网络的一系列实验通过一个具有多个获胜隐藏层节点的增强前馈神经网络将合成视频图像转换为眼睛坐标。讨论了设计过程中遇到的困难。结果表明,通过处理从安装在护目镜上的微型电荷耦合器件(CCD)摄像机收集的视频图像,可以精确、细致地跟踪人眼的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Network Approach to Tracking Eye Position
The design of a neural network based eye tracker is presented. A series of experiments with counterpropagation neural networks convert synthetic video images into eye coordinates by an enhanced feed-forward neural network with multiple winning hidden layer nodes. Difficulties encountered during the design process are discussed. The results show that accurate, fine-grained tracking of a human's eye position is possible by processing the video image collected from a goggle-mounted miniature charge-coupled device (CCD) camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信