非平凡域上非线性热传导问题的有限元控制律

Mashuq un Nabi, P. Guha
{"title":"非平凡域上非线性热传导问题的有限元控制律","authors":"Mashuq un Nabi, P. Guha","doi":"10.1109/MED.2009.5164560","DOIUrl":null,"url":null,"abstract":"A modeling and control strategy is presented for a nonlinear problem of heating a domain of nontrivial geometry from an arbitrary initial to another arbitrary desired temperature profile. A large dynamic model of the nonlinear heat equation is obtained through finite element (FE), which is reduced using proper orthogonal decomposition. Finally, a nonlinear control law is proposed for the control problem and its stability proved through Lyapunov analysis. Results of numerical implementation are presented and possible extensions identified.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A control law for a nonlinear heat conduction problem on nontrivial domains using FEM\",\"authors\":\"Mashuq un Nabi, P. Guha\",\"doi\":\"10.1109/MED.2009.5164560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modeling and control strategy is presented for a nonlinear problem of heating a domain of nontrivial geometry from an arbitrary initial to another arbitrary desired temperature profile. A large dynamic model of the nonlinear heat equation is obtained through finite element (FE), which is reduced using proper orthogonal decomposition. Finally, a nonlinear control law is proposed for the control problem and its stability proved through Lyapunov analysis. Results of numerical implementation are presented and possible extensions identified.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对一个非平凡几何区域从任意初始温度曲线加热到另一个任意期望温度曲线的非线性问题,提出了一种建模和控制策略。通过有限元分析得到了非线性热方程的大动力学模型,并采用适当的正交分解方法对其进行了化简。最后,针对控制问题提出了一种非线性控制律,并通过李雅普诺夫分析证明了其稳定性。给出了数值实现的结果,并确定了可能的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A control law for a nonlinear heat conduction problem on nontrivial domains using FEM
A modeling and control strategy is presented for a nonlinear problem of heating a domain of nontrivial geometry from an arbitrary initial to another arbitrary desired temperature profile. A large dynamic model of the nonlinear heat equation is obtained through finite element (FE), which is reduced using proper orthogonal decomposition. Finally, a nonlinear control law is proposed for the control problem and its stability proved through Lyapunov analysis. Results of numerical implementation are presented and possible extensions identified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信