利用数学形态学自动检测微动脉瘤

A. A. Purwita, Kresno Adityowibowo, Ashlih Dameitry, M. W. S. Atman
{"title":"利用数学形态学自动检测微动脉瘤","authors":"A. A. Purwita, Kresno Adityowibowo, Ashlih Dameitry, M. W. S. Atman","doi":"10.1109/ICICI-BME.2011.6108606","DOIUrl":null,"url":null,"abstract":"Diabetes is one of the most rapidly increasing health threats worldwide. One of the further abnormalities is on retina (diabetic retinopathy). Early treatment can be conduct from detection of microaneurysms. The main concentration of this paper is the algorithm to detect microaneurysm with mathematical morphology. The mathematical morphology is choosen because microaneurysms tend to have typical shape. Generally, the algorithm is consist of three stages. The first is preprocessing, the second is detecting candidate microaneurysms, and the third is postprocessing handling the process of removing unused features. The performances is evaluated using the database from DIARETDB1 which provides ground truth collected from several experts and a strict evaluation protocol. The optimal performance will be satified when considering green channel obtaining, PAL size image processing, adaptive histogram equalization threshold at 0.03, canny edge detection threshold at 0.16, MAs and optimum microaneurysms size at 5 to 16 pixels.","PeriodicalId":395673,"journal":{"name":"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Automated microaneurysm detection using mathematical morphology\",\"authors\":\"A. A. Purwita, Kresno Adityowibowo, Ashlih Dameitry, M. W. S. Atman\",\"doi\":\"10.1109/ICICI-BME.2011.6108606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is one of the most rapidly increasing health threats worldwide. One of the further abnormalities is on retina (diabetic retinopathy). Early treatment can be conduct from detection of microaneurysms. The main concentration of this paper is the algorithm to detect microaneurysm with mathematical morphology. The mathematical morphology is choosen because microaneurysms tend to have typical shape. Generally, the algorithm is consist of three stages. The first is preprocessing, the second is detecting candidate microaneurysms, and the third is postprocessing handling the process of removing unused features. The performances is evaluated using the database from DIARETDB1 which provides ground truth collected from several experts and a strict evaluation protocol. The optimal performance will be satified when considering green channel obtaining, PAL size image processing, adaptive histogram equalization threshold at 0.03, canny edge detection threshold at 0.16, MAs and optimum microaneurysms size at 5 to 16 pixels.\",\"PeriodicalId\":395673,\"journal\":{\"name\":\"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICI-BME.2011.6108606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2011.6108606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

糖尿病是全世界增长最快的健康威胁之一。另一种异常是视网膜(糖尿病视网膜病变)。早期治疗可以从检测到微动脉瘤开始。本文的研究重点是基于数学形态学的微动脉瘤检测算法。选择数学形态学是因为微动脉瘤往往具有典型的形状。该算法一般分为三个阶段。第一个是预处理,第二个是检测候选微动脉瘤,第三个是后处理,处理去除未使用特征的过程。使用DIARETDB1的数据库进行性能评估,该数据库提供了从多位专家收集的基础事实和严格的评估协议。考虑绿色通道获取、PAL大小图像处理、自适应直方图均衡化阈值为0.03、边缘检测阈值为0.16、MAs和最佳微动脉瘤大小为5 ~ 16像素时,可以获得最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated microaneurysm detection using mathematical morphology
Diabetes is one of the most rapidly increasing health threats worldwide. One of the further abnormalities is on retina (diabetic retinopathy). Early treatment can be conduct from detection of microaneurysms. The main concentration of this paper is the algorithm to detect microaneurysm with mathematical morphology. The mathematical morphology is choosen because microaneurysms tend to have typical shape. Generally, the algorithm is consist of three stages. The first is preprocessing, the second is detecting candidate microaneurysms, and the third is postprocessing handling the process of removing unused features. The performances is evaluated using the database from DIARETDB1 which provides ground truth collected from several experts and a strict evaluation protocol. The optimal performance will be satified when considering green channel obtaining, PAL size image processing, adaptive histogram equalization threshold at 0.03, canny edge detection threshold at 0.16, MAs and optimum microaneurysms size at 5 to 16 pixels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信