线性系统定点实现的误差分析方法

Thibault Hilaire, Anastasia Volkova
{"title":"线性系统定点实现的误差分析方法","authors":"Thibault Hilaire, Anastasia Volkova","doi":"10.1109/SiPS.2017.8109991","DOIUrl":null,"url":null,"abstract":"In this paper we propose to perform a complete error analysis of a fixed-point implementation of any linear system described by data-flow graph. The system is translated to a matrix-based internal representation that is used to determine the analytical errors-to-output relationship. The error induced by the finite precision arithmetic (for each sum-of-product) of the implementation propagates through the system and perturbs the output. The output error is then analysed with three different point of view: classical statistical approach (errors modeled as noises), worst-case approach (errors modeled as intervals) and probability density function. These three approaches allow determining the output error due to the finite precision with respect to its probability to occur and give the designer a complete output error analysis. Finally, our methodology is illustrated with numerical examples.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Error analysis methods for the fixed-point implementation of linear systems\",\"authors\":\"Thibault Hilaire, Anastasia Volkova\",\"doi\":\"10.1109/SiPS.2017.8109991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose to perform a complete error analysis of a fixed-point implementation of any linear system described by data-flow graph. The system is translated to a matrix-based internal representation that is used to determine the analytical errors-to-output relationship. The error induced by the finite precision arithmetic (for each sum-of-product) of the implementation propagates through the system and perturbs the output. The output error is then analysed with three different point of view: classical statistical approach (errors modeled as noises), worst-case approach (errors modeled as intervals) and probability density function. These three approaches allow determining the output error due to the finite precision with respect to its probability to occur and give the designer a complete output error analysis. Finally, our methodology is illustrated with numerical examples.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8109991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出对任何由数据流图描述的线性系统的不动点实现进行完整的误差分析。系统被转换为基于矩阵的内部表示,用于确定分析误差到输出的关系。实现的有限精度算法(对于每个乘积和)所引起的误差在整个系统中传播并干扰输出。然后用三种不同的观点分析输出误差:经典统计方法(误差建模为噪声),最坏情况方法(误差建模为间隔)和概率密度函数。这三种方法可以确定由于相对于其发生概率的有限精度而产生的输出误差,并为设计人员提供完整的输出误差分析。最后,用数值算例说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis methods for the fixed-point implementation of linear systems
In this paper we propose to perform a complete error analysis of a fixed-point implementation of any linear system described by data-flow graph. The system is translated to a matrix-based internal representation that is used to determine the analytical errors-to-output relationship. The error induced by the finite precision arithmetic (for each sum-of-product) of the implementation propagates through the system and perturbs the output. The output error is then analysed with three different point of view: classical statistical approach (errors modeled as noises), worst-case approach (errors modeled as intervals) and probability density function. These three approaches allow determining the output error due to the finite precision with respect to its probability to occur and give the designer a complete output error analysis. Finally, our methodology is illustrated with numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信