语义关联与监督相结合的词义消歧方法

Qiaoli Zhou, Yuguang Meng
{"title":"语义关联与监督相结合的词义消歧方法","authors":"Qiaoli Zhou, Yuguang Meng","doi":"10.1109/IALP48816.2019.9037717","DOIUrl":null,"url":null,"abstract":"We present a semi-supervised learning method at efficiently exploits semantic relatedness in order to incorporate sense knowledge into a word sense disambiguation model and to leverage system performance. We have presented sense relativeness algorithms which combine neural model learned from a generic embedding function for variable length contexts of target words on a POS-labeled text corpus, with sense-labeled data in the form of example sentences. This paper investigates the way of incorporating semantic relatedness in a word sense disambiguation setting and evaluates the method on some SensEval/SemEval lexical sample tasks. The obtained results show that such representations consistently improve the accuracy of the selective supervised WSD system.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"combination of Semantic Relatedness with Supervised Method for Word Sense Disambiguation\",\"authors\":\"Qiaoli Zhou, Yuguang Meng\",\"doi\":\"10.1109/IALP48816.2019.9037717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a semi-supervised learning method at efficiently exploits semantic relatedness in order to incorporate sense knowledge into a word sense disambiguation model and to leverage system performance. We have presented sense relativeness algorithms which combine neural model learned from a generic embedding function for variable length contexts of target words on a POS-labeled text corpus, with sense-labeled data in the form of example sentences. This paper investigates the way of incorporating semantic relatedness in a word sense disambiguation setting and evaluates the method on some SensEval/SemEval lexical sample tasks. The obtained results show that such representations consistently improve the accuracy of the selective supervised WSD system.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种半监督学习方法,有效地利用语义相关性,将语义知识整合到词义消歧模型中,并利用系统性能。我们提出了一种语义相关性算法,该算法将从一个通用嵌入函数中学习到的神经模型与poss标记文本语料库上目标词的变长上下文相结合,并以例句的形式进行语义标记数据。本文研究了在词义消歧设置中引入语义关联的方法,并在一些SensEval/SemEval词汇样本任务中对该方法进行了评价。得到的结果表明,这种表示一致地提高了选择性监督WSD系统的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
combination of Semantic Relatedness with Supervised Method for Word Sense Disambiguation
We present a semi-supervised learning method at efficiently exploits semantic relatedness in order to incorporate sense knowledge into a word sense disambiguation model and to leverage system performance. We have presented sense relativeness algorithms which combine neural model learned from a generic embedding function for variable length contexts of target words on a POS-labeled text corpus, with sense-labeled data in the form of example sentences. This paper investigates the way of incorporating semantic relatedness in a word sense disambiguation setting and evaluates the method on some SensEval/SemEval lexical sample tasks. The obtained results show that such representations consistently improve the accuracy of the selective supervised WSD system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信