{"title":"利用转录组-代谢组™技术模拟异氟醚对大脑的影响:麻醉对大鼠杏仁核和皮质代谢的影响","authors":"Allen K. Bourdon, C. Phelix","doi":"10.4018/IJKDB.2015010101","DOIUrl":null,"url":null,"abstract":"Anesthetics are a widely used class of drugs with a fast onset and comparatively slow offset, which consequently equates to a low therapeutic index. Unfortunately, the mechanism of action for this class of drugs is considered unknown. For that reason, there is great medical need to study effects of anesthetics on the brain. In this study transcriptomes, generated 6 hours after a 15 minute exposure to isoflurane, from the rat cortex and basolateral amygdala were used to determine parameters for a deterministic biosimulation model of metabolic pathways. Metabolomic results indicated involvement of lipid pathways known for anesthetic effects on membrane function and alternate energy sources due to reduced glucose utilization. Key insights are revealed for potential mechanisms by which anesthetics block memory of the medical procedures.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Biosimulation of Isoflurane Effects on Brain Using Transcriptome-To-Metabolome™ Technology: Anesthesia Effects on Rat Amygdala & Cortex Metabolism\",\"authors\":\"Allen K. Bourdon, C. Phelix\",\"doi\":\"10.4018/IJKDB.2015010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anesthetics are a widely used class of drugs with a fast onset and comparatively slow offset, which consequently equates to a low therapeutic index. Unfortunately, the mechanism of action for this class of drugs is considered unknown. For that reason, there is great medical need to study effects of anesthetics on the brain. In this study transcriptomes, generated 6 hours after a 15 minute exposure to isoflurane, from the rat cortex and basolateral amygdala were used to determine parameters for a deterministic biosimulation model of metabolic pathways. Metabolomic results indicated involvement of lipid pathways known for anesthetic effects on membrane function and alternate energy sources due to reduced glucose utilization. Key insights are revealed for potential mechanisms by which anesthetics block memory of the medical procedures.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJKDB.2015010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2015010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Silico Biosimulation of Isoflurane Effects on Brain Using Transcriptome-To-Metabolome™ Technology: Anesthesia Effects on Rat Amygdala & Cortex Metabolism
Anesthetics are a widely used class of drugs with a fast onset and comparatively slow offset, which consequently equates to a low therapeutic index. Unfortunately, the mechanism of action for this class of drugs is considered unknown. For that reason, there is great medical need to study effects of anesthetics on the brain. In this study transcriptomes, generated 6 hours after a 15 minute exposure to isoflurane, from the rat cortex and basolateral amygdala were used to determine parameters for a deterministic biosimulation model of metabolic pathways. Metabolomic results indicated involvement of lipid pathways known for anesthetic effects on membrane function and alternate energy sources due to reduced glucose utilization. Key insights are revealed for potential mechanisms by which anesthetics block memory of the medical procedures.