Tanner(5,11)准循环LDPC码的周长分析

Hengzhou Xu, Hai Zhu, Mengmeng Xu, Bo Zhang, Sifeng Zhu
{"title":"Tanner(5,11)准循环LDPC码的周长分析","authors":"Hengzhou Xu, Hai Zhu, Mengmeng Xu, Bo Zhang, Sifeng Zhu","doi":"10.1109/CIS2018.2018.00053","DOIUrl":null,"url":null,"abstract":"Motivated by the works on the girth of Tanner (3,5), (3,7), (3,11), and (5,7) quasi-cyclic (QC) LDPC codes, we in this paper study the girth of Tanner (5,11) QC-LDPC codes. We first analyze the cycles of Tanner (5,11) QC-LDPC codes, and obtain the conditions for the existence of cycles of length less than 12 in Tanner (5,11) QC-LDPC codes of length 11p where p is a prime number and p =1 (mod 55). Notice that the condition is represented by the polynomial equations in a 55th root of unity of the prime field Fp. By checking the existence of solutions for these equations over Fp, the girths of Tanner (5,11) QC-LDPC codes are obtained.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Girth Analysis of Tanner (5,11) Quasi-Cyclic LDPC Codes\",\"authors\":\"Hengzhou Xu, Hai Zhu, Mengmeng Xu, Bo Zhang, Sifeng Zhu\",\"doi\":\"10.1109/CIS2018.2018.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the works on the girth of Tanner (3,5), (3,7), (3,11), and (5,7) quasi-cyclic (QC) LDPC codes, we in this paper study the girth of Tanner (5,11) QC-LDPC codes. We first analyze the cycles of Tanner (5,11) QC-LDPC codes, and obtain the conditions for the existence of cycles of length less than 12 in Tanner (5,11) QC-LDPC codes of length 11p where p is a prime number and p =1 (mod 55). Notice that the condition is represented by the polynomial equations in a 55th root of unity of the prime field Fp. By checking the existence of solutions for these equations over Fp, the girths of Tanner (5,11) QC-LDPC codes are obtained.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在Tanner(3,5)、(3,7)、(3,11)、(5,7)拟循环(QC) LDPC码周长研究的基础上,本文研究了Tanner (5,11) QC-LDPC码的周长。首先分析了Tanner (5,11) QC-LDPC码的循环,得到了长度为11p且p为素数且p =1 (mod 55)的Tanner (5,11) QC-LDPC码存在长度小于12的循环的条件。注意,这个条件是由多项式方程在素数场Fp的单位的55次方根中表示的。通过验证这些方程在Fp上解的存在性,得到了Tanner (5,11) QC-LDPC码的周长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Girth Analysis of Tanner (5,11) Quasi-Cyclic LDPC Codes
Motivated by the works on the girth of Tanner (3,5), (3,7), (3,11), and (5,7) quasi-cyclic (QC) LDPC codes, we in this paper study the girth of Tanner (5,11) QC-LDPC codes. We first analyze the cycles of Tanner (5,11) QC-LDPC codes, and obtain the conditions for the existence of cycles of length less than 12 in Tanner (5,11) QC-LDPC codes of length 11p where p is a prime number and p =1 (mod 55). Notice that the condition is represented by the polynomial equations in a 55th root of unity of the prime field Fp. By checking the existence of solutions for these equations over Fp, the girths of Tanner (5,11) QC-LDPC codes are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信