全自适应神经非线性FIR滤波器

W. C. Siaw, S. L. Goh, A. I. Hanna, Christos Boukis, D. Mandic
{"title":"全自适应神经非线性FIR滤波器","authors":"W. C. Siaw, S. L. Goh, A. I. Hanna, Christos Boukis, D. Mandic","doi":"10.1109/NNSP.2002.1030039","DOIUrl":null,"url":null,"abstract":"A class of algorithms for training neural adaptive filters employed for nonlinear adaptive filtering is introduced. Sign algorithms incorporated with the fully adaptive normalised nonlinear gradient descent (SFANNGD) algorithm, normalised nonlinear gradient descent (SNNGD) algorithm and nonlinear gradient descent (SNGD) algorithm are proposed. The SFANNGD, SNNGD and the SNGD are derived based upon the principle of the sign algorithm used in the least mean square (LMS) filters. Experiments on nonlinear signals confirm that SFANNGD, SNNGD and the SNGD algorithms perform on par as compared to their basic algorithms but the sign algorithm decreases the overall computational complexity of the adaptive filter algorithms.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fully adaptive neural nonlinear FIR filters\",\"authors\":\"W. C. Siaw, S. L. Goh, A. I. Hanna, Christos Boukis, D. Mandic\",\"doi\":\"10.1109/NNSP.2002.1030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of algorithms for training neural adaptive filters employed for nonlinear adaptive filtering is introduced. Sign algorithms incorporated with the fully adaptive normalised nonlinear gradient descent (SFANNGD) algorithm, normalised nonlinear gradient descent (SNNGD) algorithm and nonlinear gradient descent (SNGD) algorithm are proposed. The SFANNGD, SNNGD and the SNGD are derived based upon the principle of the sign algorithm used in the least mean square (LMS) filters. Experiments on nonlinear signals confirm that SFANNGD, SNNGD and the SNGD algorithms perform on par as compared to their basic algorithms but the sign algorithm decreases the overall computational complexity of the adaptive filter algorithms.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一类用于非线性自适应滤波的神经自适应滤波器的训练算法。提出了结合全自适应归一化非线性梯度下降(SFANNGD)算法、归一化非线性梯度下降(SNNGD)算法和非线性梯度下降(SNGD)算法的符号算法。SFANNGD、SNNGD和SNGD是基于最小均方(LMS)滤波器中使用的符号算法的原理推导出来的。在非线性信号上的实验证实,SFANNGD、SNNGD和SNGD算法的性能与其基本算法相当,但符号算法降低了自适应滤波算法的总体计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully adaptive neural nonlinear FIR filters
A class of algorithms for training neural adaptive filters employed for nonlinear adaptive filtering is introduced. Sign algorithms incorporated with the fully adaptive normalised nonlinear gradient descent (SFANNGD) algorithm, normalised nonlinear gradient descent (SNNGD) algorithm and nonlinear gradient descent (SNGD) algorithm are proposed. The SFANNGD, SNNGD and the SNGD are derived based upon the principle of the sign algorithm used in the least mean square (LMS) filters. Experiments on nonlinear signals confirm that SFANNGD, SNNGD and the SNGD algorithms perform on par as compared to their basic algorithms but the sign algorithm decreases the overall computational complexity of the adaptive filter algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信