向下分离对于有限的非确定性类来说是灾难性的失败

R. Beigel, J. Goldsmith
{"title":"向下分离对于有限的非确定性类来说是灾难性的失败","authors":"R. Beigel, J. Goldsmith","doi":"10.1109/SCT.1994.315810","DOIUrl":null,"url":null,"abstract":"The /spl beta/ hierarchy consists of sets /spl betasub k/=NP[log/sup k/ n]/spl sube/NP. Unlike collapses in the polynomial hierarchy and the Boolean hierarchy, collapses in the /spl beta/ hierarchy do not seem to translate up, nor does closure under complement seem to cause the hierarchy to collapse. For any consistent set of collapses and separations of levels of the hierarchy that respects P=/spl betasub 1spl subespl betasub 2spl sube/.../spl sube/NP, we can construct an oracle relative to which those collapses and separations hold, yet any (or all) of the /spl betasub k/'s are closed under complement. We give a few relatively tame examples: first, for any k/spl ges/1, we construct an oracle relative to which P=/spl betasub kspl nespl betasub k+1spl nespl betasub k+2spl ne/..., and then another oracle relative to which P=/spl betasub kspl nespl betasub k+1/=PSPACE. We also construct an oracle relative to which /spl betasub 2k/=/spl betasub 2k+1spl nespl betasub 2k+2/ for all k. These results hold for more general nondeterminism hierarchies within NP, although they are in sharp contrast to the upward collapse results for Buss and Goldsmith's (1993) nondeterminism hierarchy in P.<<ETX>>","PeriodicalId":386782,"journal":{"name":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Downward separation fails catastrophically for limited nondeterminism classes\",\"authors\":\"R. Beigel, J. Goldsmith\",\"doi\":\"10.1109/SCT.1994.315810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The /spl beta/ hierarchy consists of sets /spl betasub k/=NP[log/sup k/ n]/spl sube/NP. Unlike collapses in the polynomial hierarchy and the Boolean hierarchy, collapses in the /spl beta/ hierarchy do not seem to translate up, nor does closure under complement seem to cause the hierarchy to collapse. For any consistent set of collapses and separations of levels of the hierarchy that respects P=/spl betasub 1spl subespl betasub 2spl sube/.../spl sube/NP, we can construct an oracle relative to which those collapses and separations hold, yet any (or all) of the /spl betasub k/'s are closed under complement. We give a few relatively tame examples: first, for any k/spl ges/1, we construct an oracle relative to which P=/spl betasub kspl nespl betasub k+1spl nespl betasub k+2spl ne/..., and then another oracle relative to which P=/spl betasub kspl nespl betasub k+1/=PSPACE. We also construct an oracle relative to which /spl betasub 2k/=/spl betasub 2k+1spl nespl betasub 2k+2/ for all k. These results hold for more general nondeterminism hierarchies within NP, although they are in sharp contrast to the upward collapse results for Buss and Goldsmith's (1993) nondeterminism hierarchy in P.<<ETX>>\",\"PeriodicalId\":386782,\"journal\":{\"name\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1994.315810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1994.315810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

/spl beta/层次结构由集合/spl beta k/=NP[log/sup k/ n]/spl sub /NP组成。与多项式层次结构和布尔层次结构中的崩溃不同,/spl beta/层次结构中的崩溃似乎不会向上翻译,补下的闭包似乎也不会导致层次结构崩溃。对于遵从P=/spl betsubb 1spl subespl betsubb 2spl subb /…/spl sub /NP,我们可以构造一个相对于这些崩溃和分离的oracle,但是任何(或全部)/spl sub / k/'s在补下关闭。我们给出了一些相对简单的例子:首先,对于任意k/spl序列/1,我们构造了一个相对于P=/spl betsubb kspl nespl betsubb k+1spl nespl betsubb k+2spl ne/…,然后是另一个相对于P=/spl betasub kspl nespl betasub k+1/=PSPACE的oracle。我们还构建了一个oracle,其中/spl betasub 2k/=/spl betasub 2k+1spl nespl betasub 2k+2/适用于所有k。这些结果适用于NP中更一般的非决定论层次结构,尽管它们与Buss和Goldsmith(1993)在P.>中的非决定论层次结构的向上崩溃结果形成鲜明对比
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downward separation fails catastrophically for limited nondeterminism classes
The /spl beta/ hierarchy consists of sets /spl betasub k/=NP[log/sup k/ n]/spl sube/NP. Unlike collapses in the polynomial hierarchy and the Boolean hierarchy, collapses in the /spl beta/ hierarchy do not seem to translate up, nor does closure under complement seem to cause the hierarchy to collapse. For any consistent set of collapses and separations of levels of the hierarchy that respects P=/spl betasub 1spl subespl betasub 2spl sube/.../spl sube/NP, we can construct an oracle relative to which those collapses and separations hold, yet any (or all) of the /spl betasub k/'s are closed under complement. We give a few relatively tame examples: first, for any k/spl ges/1, we construct an oracle relative to which P=/spl betasub kspl nespl betasub k+1spl nespl betasub k+2spl ne/..., and then another oracle relative to which P=/spl betasub kspl nespl betasub k+1/=PSPACE. We also construct an oracle relative to which /spl betasub 2k/=/spl betasub 2k+1spl nespl betasub 2k+2/ for all k. These results hold for more general nondeterminism hierarchies within NP, although they are in sharp contrast to the upward collapse results for Buss and Goldsmith's (1993) nondeterminism hierarchy in P.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信