基于局部方差旋转不变测度和单对全支持向量机的车身油漆缺陷检测

Parisa Kamani, A. Afshar, F. Towhidkhah, Ehsan Roghani
{"title":"基于局部方差旋转不变测度和单对全支持向量机的车身油漆缺陷检测","authors":"Parisa Kamani, A. Afshar, F. Towhidkhah, Ehsan Roghani","doi":"10.1109/ICI.2011.47","DOIUrl":null,"url":null,"abstract":"This paper presents a novel computer vision method for automatic detection and classification of car body paint defects. This new system analyzes the images sequentially acquired from car body to detect and classify different kinds of defects. First, the defect region is located by using rotation invariant measure of the local variance (VAR) operator. Next, detected defects are classified into different defect types by using One-Against-All Support Vector Machine (OAA-SVM) classifier. The experimental results demonstrated the effectiveness of the proposed approach.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Car Body Paint Defect Inspection Using Rotation Invariant Measure of the Local Variance and One-Against-All Support Vector Machine\",\"authors\":\"Parisa Kamani, A. Afshar, F. Towhidkhah, Ehsan Roghani\",\"doi\":\"10.1109/ICI.2011.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel computer vision method for automatic detection and classification of car body paint defects. This new system analyzes the images sequentially acquired from car body to detect and classify different kinds of defects. First, the defect region is located by using rotation invariant measure of the local variance (VAR) operator. Next, detected defects are classified into different defect types by using One-Against-All Support Vector Machine (OAA-SVM) classifier. The experimental results demonstrated the effectiveness of the proposed approach.\",\"PeriodicalId\":146712,\"journal\":{\"name\":\"2011 First International Conference on Informatics and Computational Intelligence\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 First International Conference on Informatics and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICI.2011.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种新的汽车车身漆面缺陷自动检测与分类的计算机视觉方法。该系统对从车身上连续采集的图像进行分析,对不同类型的缺陷进行检测和分类。首先,利用局部方差算子的旋转不变测度定位缺陷区域;其次,利用单对全支持向量机(OAA-SVM)分类器对检测到的缺陷进行分类。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Car Body Paint Defect Inspection Using Rotation Invariant Measure of the Local Variance and One-Against-All Support Vector Machine
This paper presents a novel computer vision method for automatic detection and classification of car body paint defects. This new system analyzes the images sequentially acquired from car body to detect and classify different kinds of defects. First, the defect region is located by using rotation invariant measure of the local variance (VAR) operator. Next, detected defects are classified into different defect types by using One-Against-All Support Vector Machine (OAA-SVM) classifier. The experimental results demonstrated the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信