面向边缘设备心律失常实时检测的量化卷积神经网络

M. Rizqyawan, A. Munandar, M. F. Amri, Rio Korio Utoro, Agus Pratondo
{"title":"面向边缘设备心律失常实时检测的量化卷积神经网络","authors":"M. Rizqyawan, A. Munandar, M. F. Amri, Rio Korio Utoro, Agus Pratondo","doi":"10.1109/ICRAMET51080.2020.9298667","DOIUrl":null,"url":null,"abstract":"Automatic arrhythmia detection is one of the most researched areas in electrocardiography (ECG). Many methods have been proposed for the task using, not only the traditional machine learning but also deep learning algorithms. To build a real-time edge device, the algorithm should be fast but keep the accuracy high. In this paper, a convolutional neural network (CNN) model is quantized and tested to investigate its performance for the device. Results indicate that the CNN architecture is suitable for a real-time edge device. The speed is 58.8 times faster compared to the state-of-the-art methods.","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Quantized Convolutional Neural Network toward Real-time Arrhythmia Detection in Edge Device\",\"authors\":\"M. Rizqyawan, A. Munandar, M. F. Amri, Rio Korio Utoro, Agus Pratondo\",\"doi\":\"10.1109/ICRAMET51080.2020.9298667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic arrhythmia detection is one of the most researched areas in electrocardiography (ECG). Many methods have been proposed for the task using, not only the traditional machine learning but also deep learning algorithms. To build a real-time edge device, the algorithm should be fast but keep the accuracy high. In this paper, a convolutional neural network (CNN) model is quantized and tested to investigate its performance for the device. Results indicate that the CNN architecture is suitable for a real-time edge device. The speed is 58.8 times faster compared to the state-of-the-art methods.\",\"PeriodicalId\":228482,\"journal\":{\"name\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET51080.2020.9298667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

心律失常自动检测是心电图学研究的热点之一。对于该任务,已经提出了许多方法,不仅使用传统的机器学习,还使用深度学习算法。为了构建实时的边缘设备,算法既要快速,又要保持较高的精度。本文对卷积神经网络(CNN)模型进行了量化和测试,以研究其在器件中的性能。结果表明,CNN架构适用于实时边缘设备。速度比目前最先进的方法快58.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantized Convolutional Neural Network toward Real-time Arrhythmia Detection in Edge Device
Automatic arrhythmia detection is one of the most researched areas in electrocardiography (ECG). Many methods have been proposed for the task using, not only the traditional machine learning but also deep learning algorithms. To build a real-time edge device, the algorithm should be fast but keep the accuracy high. In this paper, a convolutional neural network (CNN) model is quantized and tested to investigate its performance for the device. Results indicate that the CNN architecture is suitable for a real-time edge device. The speed is 58.8 times faster compared to the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信