Junyoung Nam, S. R. Kim, H. Chung, Jinho Choi, J. Ha
{"title":"基于Cholesky的MMSE-SIC接收机高效算法","authors":"Junyoung Nam, S. R. Kim, H. Chung, Jinho Choi, J. Ha","doi":"10.1109/GLOCOM.2007.577","DOIUrl":null,"url":null,"abstract":"The minimum mean square error with successive interference cancellation (MMSE-SIC) receiver is known to achieve the capacity of multiple-input multiple-output (MIMO) fast fading channels in the presence of knowledge of the channel at the receiver. This paper presents efficient and numerically stable Cholesky decomposition based detection algorithms for MMSE-SIC, exploiting a property of ordering of MMSE-SIC. The proposed algorithms are shown to significantly reduce the computational complexity of existing efficient algorithms for SIC in MIMO flat fading channels.","PeriodicalId":370937,"journal":{"name":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cholesky Based Efficient Algorithms for the MMSE-SIC Receiver\",\"authors\":\"Junyoung Nam, S. R. Kim, H. Chung, Jinho Choi, J. Ha\",\"doi\":\"10.1109/GLOCOM.2007.577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum mean square error with successive interference cancellation (MMSE-SIC) receiver is known to achieve the capacity of multiple-input multiple-output (MIMO) fast fading channels in the presence of knowledge of the channel at the receiver. This paper presents efficient and numerically stable Cholesky decomposition based detection algorithms for MMSE-SIC, exploiting a property of ordering of MMSE-SIC. The proposed algorithms are shown to significantly reduce the computational complexity of existing efficient algorithms for SIC in MIMO flat fading channels.\",\"PeriodicalId\":370937,\"journal\":{\"name\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2007.577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2007.577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cholesky Based Efficient Algorithms for the MMSE-SIC Receiver
The minimum mean square error with successive interference cancellation (MMSE-SIC) receiver is known to achieve the capacity of multiple-input multiple-output (MIMO) fast fading channels in the presence of knowledge of the channel at the receiver. This paper presents efficient and numerically stable Cholesky decomposition based detection algorithms for MMSE-SIC, exploiting a property of ordering of MMSE-SIC. The proposed algorithms are shown to significantly reduce the computational complexity of existing efficient algorithms for SIC in MIMO flat fading channels.