Eva Tuba, R. Jovanovic, Dejan Zivkovic, M. Beko, M. Tuba
{"title":"基于头脑风暴优化的聚类算法用于数字图像分割","authors":"Eva Tuba, R. Jovanovic, Dejan Zivkovic, M. Beko, M. Tuba","doi":"10.1109/ISDFS.2019.8757552","DOIUrl":null,"url":null,"abstract":"In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.","PeriodicalId":247412,"journal":{"name":"2019 7th International Symposium on Digital Forensics and Security (ISDFS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clustering Algorithm Optimized by Brain Storm Optimization for Digital Image Segmentation\",\"authors\":\"Eva Tuba, R. Jovanovic, Dejan Zivkovic, M. Beko, M. Tuba\",\"doi\":\"10.1109/ISDFS.2019.8757552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.\",\"PeriodicalId\":247412,\"journal\":{\"name\":\"2019 7th International Symposium on Digital Forensics and Security (ISDFS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Symposium on Digital Forensics and Security (ISDFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDFS.2019.8757552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS.2019.8757552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustering Algorithm Optimized by Brain Storm Optimization for Digital Image Segmentation
In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.