{"title":"生物识别学中的在线学习:人脸分类器更新的案例研究","authors":"Richa Singh, Mayank Vatsa, A. Ross, A. Noore","doi":"10.1109/BTAS.2009.5339071","DOIUrl":null,"url":null,"abstract":"In large scale applications, hundreds of new subjects may be regularly enrolled in a biometric system. To account for the variations in data distribution caused by these new enrollments, biometric systems require regular re-training which usually results in a very large computational overhead. This paper formally introduces the concept of online learning in biometrics. We demonstrate its application in classifier update algorithms to re-train classifier decision boundaries. Specifically, the algorithm employs online learning technique in a 2ν-Granular Soft Support Vector Machine for rapidly training and updating face recognition systems. The proposed online classifier is used in a face recognition application for classifying genuine and impostor match scores impacted by different covariates. Experiments on a heterogeneous face database of 1,194 subjects show that the proposed online classifier not only improves the verification accuracy but also significantly reduces the computational cost.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Online learning in biometrics: A case study in face classifier update\",\"authors\":\"Richa Singh, Mayank Vatsa, A. Ross, A. Noore\",\"doi\":\"10.1109/BTAS.2009.5339071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large scale applications, hundreds of new subjects may be regularly enrolled in a biometric system. To account for the variations in data distribution caused by these new enrollments, biometric systems require regular re-training which usually results in a very large computational overhead. This paper formally introduces the concept of online learning in biometrics. We demonstrate its application in classifier update algorithms to re-train classifier decision boundaries. Specifically, the algorithm employs online learning technique in a 2ν-Granular Soft Support Vector Machine for rapidly training and updating face recognition systems. The proposed online classifier is used in a face recognition application for classifying genuine and impostor match scores impacted by different covariates. Experiments on a heterogeneous face database of 1,194 subjects show that the proposed online classifier not only improves the verification accuracy but also significantly reduces the computational cost.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online learning in biometrics: A case study in face classifier update
In large scale applications, hundreds of new subjects may be regularly enrolled in a biometric system. To account for the variations in data distribution caused by these new enrollments, biometric systems require regular re-training which usually results in a very large computational overhead. This paper formally introduces the concept of online learning in biometrics. We demonstrate its application in classifier update algorithms to re-train classifier decision boundaries. Specifically, the algorithm employs online learning technique in a 2ν-Granular Soft Support Vector Machine for rapidly training and updating face recognition systems. The proposed online classifier is used in a face recognition application for classifying genuine and impostor match scores impacted by different covariates. Experiments on a heterogeneous face database of 1,194 subjects show that the proposed online classifier not only improves the verification accuracy but also significantly reduces the computational cost.