新生儿面部镶嵌:一种基于二维面部图像的兴趣区域分割方法

Pedro Henrique Silva Domingues, Renan Martins Mendes da Silva, Ibrahim Jamil Orra, Matheus Elias Cruz, T. Heiderich, C. Thomaz
{"title":"新生儿面部镶嵌:一种基于二维面部图像的兴趣区域分割方法","authors":"Pedro Henrique Silva Domingues, Renan Martins Mendes da Silva, Ibrahim Jamil Orra, Matheus Elias Cruz, T. Heiderich, C. Thomaz","doi":"10.5753/wvc.2021.18914","DOIUrl":null,"url":null,"abstract":"The daily life of preterm babies may be involved with long exposure to pain, causing problems in the development of the nervous system. In this context, an on-going area of research is the scientific development of image-based automatic pain detection systems based on several techniques, from anatomical measurements to artificial intelligence, they have generally two main issues: the categorization of the most relevant facial regions for identifying neonatal pain and the practical difficulty related to the presence of artifacts obstructing parts of the face. This paper proposes and implements an areas-of-interest automatic segmentation method that allows the creation of a novel dataset containing crops of neonatal faces relevant for pain classification, labelled by areas-of-interest and pain status. Moreover, we have also investigated the use of similarity matching techniques to compare each area-of-interest to the corresponding one extracted from a prototype face with no occlusion.t","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neonatal Face Mosaic: An areas-of-interest segmentation method based on 2D face images\",\"authors\":\"Pedro Henrique Silva Domingues, Renan Martins Mendes da Silva, Ibrahim Jamil Orra, Matheus Elias Cruz, T. Heiderich, C. Thomaz\",\"doi\":\"10.5753/wvc.2021.18914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The daily life of preterm babies may be involved with long exposure to pain, causing problems in the development of the nervous system. In this context, an on-going area of research is the scientific development of image-based automatic pain detection systems based on several techniques, from anatomical measurements to artificial intelligence, they have generally two main issues: the categorization of the most relevant facial regions for identifying neonatal pain and the practical difficulty related to the presence of artifacts obstructing parts of the face. This paper proposes and implements an areas-of-interest automatic segmentation method that allows the creation of a novel dataset containing crops of neonatal faces relevant for pain classification, labelled by areas-of-interest and pain status. Moreover, we have also investigated the use of similarity matching techniques to compare each area-of-interest to the corresponding one extracted from a prototype face with no occlusion.t\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

早产儿的日常生活可能涉及长时间接触疼痛,导致神经系统发育出现问题。在这种情况下,一个正在进行的研究领域是基于几种技术的基于图像的自动疼痛检测系统的科学发展,从解剖学测量到人工智能,它们通常有两个主要问题:用于识别新生儿疼痛的最相关面部区域的分类以及与存在的人工物体相关的实际困难。本文提出并实现了一种兴趣区域自动分割方法,该方法允许创建一个新的数据集,该数据集包含与疼痛分类相关的新生儿面部作物,并通过兴趣区域和疼痛状态进行标记。此外,我们还研究了相似性匹配技术的使用,将每个感兴趣的区域与从没有遮挡的原型人脸中提取的相应区域进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neonatal Face Mosaic: An areas-of-interest segmentation method based on 2D face images
The daily life of preterm babies may be involved with long exposure to pain, causing problems in the development of the nervous system. In this context, an on-going area of research is the scientific development of image-based automatic pain detection systems based on several techniques, from anatomical measurements to artificial intelligence, they have generally two main issues: the categorization of the most relevant facial regions for identifying neonatal pain and the practical difficulty related to the presence of artifacts obstructing parts of the face. This paper proposes and implements an areas-of-interest automatic segmentation method that allows the creation of a novel dataset containing crops of neonatal faces relevant for pain classification, labelled by areas-of-interest and pain status. Moreover, we have also investigated the use of similarity matching techniques to compare each area-of-interest to the corresponding one extracted from a prototype face with no occlusion.t
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信