股票趋势预测的事件关注网络

Hongyu Jiang, Chunyang Ye, Shanyan Lai, Hui Zhou
{"title":"股票趋势预测的事件关注网络","authors":"Hongyu Jiang, Chunyang Ye, Shanyan Lai, Hui Zhou","doi":"10.1109/ICSS53362.2021.00019","DOIUrl":null,"url":null,"abstract":"Different news events have different effects on stock price changes. If they are simply fed to the neural network for prediction, the accuracy will be affected. We propose a method to predict stock price trend based on time series news information. First, we extract events from news text and represent them as dense vectors by event embedding technique. Further-more, we employ attention mechanism to figure out event is the main cause of the price fluctuation. Then, we use a Gated Recurrent Unit to model the influence of events on stock market. Experimental results show that our model achieve a certain improvement on S&P500 index compared to baseline methods.","PeriodicalId":284026,"journal":{"name":"2021 International Conference on Service Science (ICSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event Attention Network for Stock Trend Prediction\",\"authors\":\"Hongyu Jiang, Chunyang Ye, Shanyan Lai, Hui Zhou\",\"doi\":\"10.1109/ICSS53362.2021.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different news events have different effects on stock price changes. If they are simply fed to the neural network for prediction, the accuracy will be affected. We propose a method to predict stock price trend based on time series news information. First, we extract events from news text and represent them as dense vectors by event embedding technique. Further-more, we employ attention mechanism to figure out event is the main cause of the price fluctuation. Then, we use a Gated Recurrent Unit to model the influence of events on stock market. Experimental results show that our model achieve a certain improvement on S&P500 index compared to baseline methods.\",\"PeriodicalId\":284026,\"journal\":{\"name\":\"2021 International Conference on Service Science (ICSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Service Science (ICSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSS53362.2021.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Service Science (ICSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSS53362.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同的新闻事件对股价变化的影响不同。如果简单地将其输入神经网络进行预测,则会影响预测的准确性。提出了一种基于时间序列新闻信息的股票价格趋势预测方法。首先,从新闻文本中提取事件,并通过事件嵌入技术将其表示为密集向量。此外,我们运用注意机制找出事件是价格波动的主要原因。然后,我们使用一个门控循环单元来模拟事件对股票市场的影响。实验结果表明,与基准方法相比,我们的模型在标准普尔500指数上取得了一定的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event Attention Network for Stock Trend Prediction
Different news events have different effects on stock price changes. If they are simply fed to the neural network for prediction, the accuracy will be affected. We propose a method to predict stock price trend based on time series news information. First, we extract events from news text and represent them as dense vectors by event embedding technique. Further-more, we employ attention mechanism to figure out event is the main cause of the price fluctuation. Then, we use a Gated Recurrent Unit to model the influence of events on stock market. Experimental results show that our model achieve a certain improvement on S&P500 index compared to baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信