常识性问答的可推广神经符号系统

A. Oltramari, Jonathan M Francis, Filip Ilievski, Kaixin Ma, Roshanak Mirzaee
{"title":"常识性问答的可推广神经符号系统","authors":"A. Oltramari, Jonathan M Francis, Filip Ilievski, Kaixin Ma, Roshanak Mirzaee","doi":"10.3233/FAIA210360","DOIUrl":null,"url":null,"abstract":"This chapter illustrates how suitable neuro-symbolic models for language understanding can enable domain generalizability and robustness in downstream tasks. Different methods for integrating neural language models and knowledge graphs are discussed. The situations in which this combination is most appropriate are characterized, including quantitative evaluation and qualitative error analysis on a variety of commonsense question answering benchmark datasets.","PeriodicalId":250200,"journal":{"name":"Neuro-Symbolic Artificial Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalizable Neuro-symbolic Systems for Commonsense Question Answering\",\"authors\":\"A. Oltramari, Jonathan M Francis, Filip Ilievski, Kaixin Ma, Roshanak Mirzaee\",\"doi\":\"10.3233/FAIA210360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter illustrates how suitable neuro-symbolic models for language understanding can enable domain generalizability and robustness in downstream tasks. Different methods for integrating neural language models and knowledge graphs are discussed. The situations in which this combination is most appropriate are characterized, including quantitative evaluation and qualitative error analysis on a variety of commonsense question answering benchmark datasets.\",\"PeriodicalId\":250200,\"journal\":{\"name\":\"Neuro-Symbolic Artificial Intelligence\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-Symbolic Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/FAIA210360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-Symbolic Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA210360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本章说明了适合语言理解的神经符号模型如何在下游任务中实现领域泛化和鲁棒性。讨论了神经语言模型与知识图集成的不同方法。描述了这种组合最适合的情况,包括对各种常识性问答基准数据集的定量评估和定性误差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizable Neuro-symbolic Systems for Commonsense Question Answering
This chapter illustrates how suitable neuro-symbolic models for language understanding can enable domain generalizability and robustness in downstream tasks. Different methods for integrating neural language models and knowledge graphs are discussed. The situations in which this combination is most appropriate are characterized, including quantitative evaluation and qualitative error analysis on a variety of commonsense question answering benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信