基于浸入边界法的海洋工程小尺度目标水动力数值计算方法

Prusa Filip
{"title":"基于浸入边界法的海洋工程小尺度目标水动力数值计算方法","authors":"Prusa Filip","doi":"10.38007/foe.2022.030401","DOIUrl":null,"url":null,"abstract":": Isolated piles, jacket platforms, submarine pipelines, etc. are ubiquitous structures in marine engineering. When the ratio of the lateral dimension D to the wavelength L of the part surrounded by waves is less than 0.2, it is generally called a small-scale structure. Current and waves are the two most important external loads in ocean engineering. The interaction between current and waves and small-scale structures in ocean engineering has always been the focus of research, and it is also one of the main problems that have not been well resolved in ocean engineering. In this paper, under the premise of considering the viscosity, turbulence and free surface flow of the fluid, the hydrodynamic problems related to small-scale objects in marine engineering are selected as the research content, and the numerical calculation model combining the immersion boundary method and the fluid volume method is selected for numerical calculation. The numerical expressions, solution steps and method verifications of the immersion boundary method and the fluid volume method are given respectively. A numerical calculation method by directly solving the external force source term in the immersion boundary method is proposed. The advantages, disadvantages and calculation steps of two different processing methods of applied force source terms in the immersion boundary method, continuous force method and discrete force method, are given. Instead of solving the force source term by means of interpolation and extrapolation, this paper adopts the discrete force method and the immersion boundary method for numerical calculation. Bounds method for numerical calculation. The realization process","PeriodicalId":103481,"journal":{"name":"Frontiers in Ocean Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic Numerical Calculation Method of Small-scale Objects in Ocean Engineering Based on Immersion Boundary Method\",\"authors\":\"Prusa Filip\",\"doi\":\"10.38007/foe.2022.030401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Isolated piles, jacket platforms, submarine pipelines, etc. are ubiquitous structures in marine engineering. When the ratio of the lateral dimension D to the wavelength L of the part surrounded by waves is less than 0.2, it is generally called a small-scale structure. Current and waves are the two most important external loads in ocean engineering. The interaction between current and waves and small-scale structures in ocean engineering has always been the focus of research, and it is also one of the main problems that have not been well resolved in ocean engineering. In this paper, under the premise of considering the viscosity, turbulence and free surface flow of the fluid, the hydrodynamic problems related to small-scale objects in marine engineering are selected as the research content, and the numerical calculation model combining the immersion boundary method and the fluid volume method is selected for numerical calculation. The numerical expressions, solution steps and method verifications of the immersion boundary method and the fluid volume method are given respectively. A numerical calculation method by directly solving the external force source term in the immersion boundary method is proposed. The advantages, disadvantages and calculation steps of two different processing methods of applied force source terms in the immersion boundary method, continuous force method and discrete force method, are given. Instead of solving the force source term by means of interpolation and extrapolation, this paper adopts the discrete force method and the immersion boundary method for numerical calculation. Bounds method for numerical calculation. The realization process\",\"PeriodicalId\":103481,\"journal\":{\"name\":\"Frontiers in Ocean Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38007/foe.2022.030401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38007/foe.2022.030401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隔离桩、夹套平台、海底管道等是海洋工程中普遍存在的结构形式。当被波包围部分的横向尺寸D与波长L之比小于0.2时,一般称为小尺度结构。洋流和波浪是海洋工程中最重要的两种外载荷。在海洋工程中,流波与小尺度结构的相互作用一直是研究的热点,也是海洋工程中尚未得到很好解决的主要问题之一。本文在考虑流体的黏性、湍流性和自由表面流动的前提下,选择海洋工程中涉及小尺度物体的水动力问题作为研究内容,选择浸入边界法和流体体积法相结合的数值计算模型进行数值计算。分别给出了浸没边界法和流体体积法的数值表达式、求解步骤和方法验证。提出了一种直接求解浸没边界法中外力源项的数值计算方法。给出了浸没边界法中连续力法和离散力法两种不同的施加力源项处理方法的优缺点及计算步骤。本文采用离散力法和浸入边界法进行数值计算,而不是采用插值外推法求解力源项。数值计算的边界法。实现过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic Numerical Calculation Method of Small-scale Objects in Ocean Engineering Based on Immersion Boundary Method
: Isolated piles, jacket platforms, submarine pipelines, etc. are ubiquitous structures in marine engineering. When the ratio of the lateral dimension D to the wavelength L of the part surrounded by waves is less than 0.2, it is generally called a small-scale structure. Current and waves are the two most important external loads in ocean engineering. The interaction between current and waves and small-scale structures in ocean engineering has always been the focus of research, and it is also one of the main problems that have not been well resolved in ocean engineering. In this paper, under the premise of considering the viscosity, turbulence and free surface flow of the fluid, the hydrodynamic problems related to small-scale objects in marine engineering are selected as the research content, and the numerical calculation model combining the immersion boundary method and the fluid volume method is selected for numerical calculation. The numerical expressions, solution steps and method verifications of the immersion boundary method and the fluid volume method are given respectively. A numerical calculation method by directly solving the external force source term in the immersion boundary method is proposed. The advantages, disadvantages and calculation steps of two different processing methods of applied force source terms in the immersion boundary method, continuous force method and discrete force method, are given. Instead of solving the force source term by means of interpolation and extrapolation, this paper adopts the discrete force method and the immersion boundary method for numerical calculation. Bounds method for numerical calculation. The realization process
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信