解决问题:重新审视公共云中基于预测的工作协同定位

Justin Kur, Jingshu Chen, Ji Xue, Jun Huang
{"title":"解决问题:重新审视公共云中基于预测的工作协同定位","authors":"Justin Kur, Jingshu Chen, Ji Xue, Jun Huang","doi":"10.1109/UCC56403.2022.00029","DOIUrl":null,"url":null,"abstract":"Overall resource utilization in public cloud data centers remains very low. To increase the efficiency of these data centers, low priority batch jobs are often co-located on the same machines as latency-sensitive jobs. Existing methodologies have used machine learning to predict the amount of resources that should be reserved for these jobs to maintain acceptable latency. However, these methodologies overlook the impact of measurement granularity on usage prediction and scheduling performance. When batch jobs have long durations, coarsegrained data can be used to make the prediction problem less challenging, but the resulting predictions may degrade scheduling performance. In this paper, we investigate the impact of measurement granularity on scheduler performance using extensive trace-driven simulation and job data generated from the Alibaba cluster trace.","PeriodicalId":203244,"journal":{"name":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolution Matters: Revisiting Prediction-Based Job Co-location in Public Clouds\",\"authors\":\"Justin Kur, Jingshu Chen, Ji Xue, Jun Huang\",\"doi\":\"10.1109/UCC56403.2022.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overall resource utilization in public cloud data centers remains very low. To increase the efficiency of these data centers, low priority batch jobs are often co-located on the same machines as latency-sensitive jobs. Existing methodologies have used machine learning to predict the amount of resources that should be reserved for these jobs to maintain acceptable latency. However, these methodologies overlook the impact of measurement granularity on usage prediction and scheduling performance. When batch jobs have long durations, coarsegrained data can be used to make the prediction problem less challenging, but the resulting predictions may degrade scheduling performance. In this paper, we investigate the impact of measurement granularity on scheduler performance using extensive trace-driven simulation and job data generated from the Alibaba cluster trace.\",\"PeriodicalId\":203244,\"journal\":{\"name\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC56403.2022.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC56403.2022.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公共云数据中心的整体资源利用率仍然很低。为了提高这些数据中心的效率,低优先级的批处理作业通常与对延迟敏感的作业共存于同一台机器上。现有的方法已经使用机器学习来预测应该为这些作业保留的资源量,以保持可接受的延迟。然而,这些方法忽略了度量粒度对使用预测和调度性能的影响。当批作业的持续时间较长时,可以使用粗粒度数据来降低预测问题的难度,但由此产生的预测可能会降低调度性能。在本文中,我们使用广泛的跟踪驱动模拟和从阿里巴巴集群跟踪生成的作业数据来研究测量粒度对调度器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolution Matters: Revisiting Prediction-Based Job Co-location in Public Clouds
Overall resource utilization in public cloud data centers remains very low. To increase the efficiency of these data centers, low priority batch jobs are often co-located on the same machines as latency-sensitive jobs. Existing methodologies have used machine learning to predict the amount of resources that should be reserved for these jobs to maintain acceptable latency. However, these methodologies overlook the impact of measurement granularity on usage prediction and scheduling performance. When batch jobs have long durations, coarsegrained data can be used to make the prediction problem less challenging, but the resulting predictions may degrade scheduling performance. In this paper, we investigate the impact of measurement granularity on scheduler performance using extensive trace-driven simulation and job data generated from the Alibaba cluster trace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信