语音情感识别中一级和两级声学建模的比较

Björn Schuller, Bogdan Vlasenko, Ricardo Minguez, G. Rigoll, A. Wendemuth
{"title":"语音情感识别中一级和两级声学建模的比较","authors":"Björn Schuller, Bogdan Vlasenko, Ricardo Minguez, G. Rigoll, A. Wendemuth","doi":"10.1109/ASRU.2007.4430180","DOIUrl":null,"url":null,"abstract":"In the search for a standard unit for use in recognition of emotion in speech, a whole turn, that is the full section of speech by one person in a conversation, is common. Within applications such turns often seem favorable. Yet, high effectiveness of sub-turn entities is known. In this respect a two-stage approach is investigated to provide higher temporal resolution by chunking of speech-turns according to acoustic properties, and multi-instance learning for turn-mapping after individual chunk analysis. For chunking fast pre-segmentation into emotionally quasi-stationary segments by one-pass Viterbi beam search with token passing basing on MFCC is used. Chunk analysis is realized by brute-force large feature space construction with subsequent subset selection, SVM classification, and speaker normalization. Extensive tests reveal differences compared to one-stage processing. Alternatively, syllables are used for chunking.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Comparing one and two-stage acoustic modeling in the recognition of emotion in speech\",\"authors\":\"Björn Schuller, Bogdan Vlasenko, Ricardo Minguez, G. Rigoll, A. Wendemuth\",\"doi\":\"10.1109/ASRU.2007.4430180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the search for a standard unit for use in recognition of emotion in speech, a whole turn, that is the full section of speech by one person in a conversation, is common. Within applications such turns often seem favorable. Yet, high effectiveness of sub-turn entities is known. In this respect a two-stage approach is investigated to provide higher temporal resolution by chunking of speech-turns according to acoustic properties, and multi-instance learning for turn-mapping after individual chunk analysis. For chunking fast pre-segmentation into emotionally quasi-stationary segments by one-pass Viterbi beam search with token passing basing on MFCC is used. Chunk analysis is realized by brute-force large feature space construction with subsequent subset selection, SVM classification, and speaker normalization. Extensive tests reveal differences compared to one-stage processing. Alternatively, syllables are used for chunking.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

在寻找用于识别言语情感的标准单位时,一个完整的回合,即一个人在谈话中的完整部分,是很常见的。在应用程序中,这种转变通常看起来是有利的。然而,子轮实体的高效率是众所周知的。在这方面,研究了一种两阶段的方法,通过根据声学特性对语音转向进行分块,以及在单个块分析后进行多实例学习进行转向映射,来提供更高的时间分辨率。采用基于MFCC的单次维特比波束搜索和令牌传递将快速预分割成情感准平稳段。块分析是通过暴力大特征空间构建和随后的子集选择、SVM分类和说话人归一化来实现的。广泛的测试揭示了与单阶段处理相比的差异。或者,音节被用于分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing one and two-stage acoustic modeling in the recognition of emotion in speech
In the search for a standard unit for use in recognition of emotion in speech, a whole turn, that is the full section of speech by one person in a conversation, is common. Within applications such turns often seem favorable. Yet, high effectiveness of sub-turn entities is known. In this respect a two-stage approach is investigated to provide higher temporal resolution by chunking of speech-turns according to acoustic properties, and multi-instance learning for turn-mapping after individual chunk analysis. For chunking fast pre-segmentation into emotionally quasi-stationary segments by one-pass Viterbi beam search with token passing basing on MFCC is used. Chunk analysis is realized by brute-force large feature space construction with subsequent subset selection, SVM classification, and speaker normalization. Extensive tests reveal differences compared to one-stage processing. Alternatively, syllables are used for chunking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信