Björn Schuller, Bogdan Vlasenko, Ricardo Minguez, G. Rigoll, A. Wendemuth
{"title":"语音情感识别中一级和两级声学建模的比较","authors":"Björn Schuller, Bogdan Vlasenko, Ricardo Minguez, G. Rigoll, A. Wendemuth","doi":"10.1109/ASRU.2007.4430180","DOIUrl":null,"url":null,"abstract":"In the search for a standard unit for use in recognition of emotion in speech, a whole turn, that is the full section of speech by one person in a conversation, is common. Within applications such turns often seem favorable. Yet, high effectiveness of sub-turn entities is known. In this respect a two-stage approach is investigated to provide higher temporal resolution by chunking of speech-turns according to acoustic properties, and multi-instance learning for turn-mapping after individual chunk analysis. For chunking fast pre-segmentation into emotionally quasi-stationary segments by one-pass Viterbi beam search with token passing basing on MFCC is used. Chunk analysis is realized by brute-force large feature space construction with subsequent subset selection, SVM classification, and speaker normalization. Extensive tests reveal differences compared to one-stage processing. Alternatively, syllables are used for chunking.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Comparing one and two-stage acoustic modeling in the recognition of emotion in speech\",\"authors\":\"Björn Schuller, Bogdan Vlasenko, Ricardo Minguez, G. Rigoll, A. Wendemuth\",\"doi\":\"10.1109/ASRU.2007.4430180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the search for a standard unit for use in recognition of emotion in speech, a whole turn, that is the full section of speech by one person in a conversation, is common. Within applications such turns often seem favorable. Yet, high effectiveness of sub-turn entities is known. In this respect a two-stage approach is investigated to provide higher temporal resolution by chunking of speech-turns according to acoustic properties, and multi-instance learning for turn-mapping after individual chunk analysis. For chunking fast pre-segmentation into emotionally quasi-stationary segments by one-pass Viterbi beam search with token passing basing on MFCC is used. Chunk analysis is realized by brute-force large feature space construction with subsequent subset selection, SVM classification, and speaker normalization. Extensive tests reveal differences compared to one-stage processing. Alternatively, syllables are used for chunking.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing one and two-stage acoustic modeling in the recognition of emotion in speech
In the search for a standard unit for use in recognition of emotion in speech, a whole turn, that is the full section of speech by one person in a conversation, is common. Within applications such turns often seem favorable. Yet, high effectiveness of sub-turn entities is known. In this respect a two-stage approach is investigated to provide higher temporal resolution by chunking of speech-turns according to acoustic properties, and multi-instance learning for turn-mapping after individual chunk analysis. For chunking fast pre-segmentation into emotionally quasi-stationary segments by one-pass Viterbi beam search with token passing basing on MFCC is used. Chunk analysis is realized by brute-force large feature space construction with subsequent subset selection, SVM classification, and speaker normalization. Extensive tests reveal differences compared to one-stage processing. Alternatively, syllables are used for chunking.