文本语义相似度的随机漫步

Daniel Ramage, Anna N. Rafferty, Christopher D. Manning
{"title":"文本语义相似度的随机漫步","authors":"Daniel Ramage, Anna N. Rafferty, Christopher D. Manning","doi":"10.3115/1708124.1708131","DOIUrl":null,"url":null,"abstract":"Many tasks in NLP stand to benefit from robust measures of semantic similarity for units above the level of individual words. Rich semantic resources such as WordNet provide local semantic information at the lexical level. However, effectively combining this information to compute scores for phrases or sentences is an open problem. Our algorithm aggregates local relatedness information via a random walk over a graph constructed from an underlying lexical resource. The stationary distribution of the graph walk forms a \"semantic signature\" that can be compared to another such distribution to get a relat-edness score for texts. On a paraphrase recognition task, the algorithm achieves an 18.5% relative reduction in error rate over a vector-space baseline. We also show that the graph walk similarity between texts has complementary value as a feature for recognizing textual entailment, improving on a competitive baseline system.","PeriodicalId":359354,"journal":{"name":"Workshop on Graph-based Methods for Natural Language Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Random Walks for Text Semantic Similarity\",\"authors\":\"Daniel Ramage, Anna N. Rafferty, Christopher D. Manning\",\"doi\":\"10.3115/1708124.1708131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many tasks in NLP stand to benefit from robust measures of semantic similarity for units above the level of individual words. Rich semantic resources such as WordNet provide local semantic information at the lexical level. However, effectively combining this information to compute scores for phrases or sentences is an open problem. Our algorithm aggregates local relatedness information via a random walk over a graph constructed from an underlying lexical resource. The stationary distribution of the graph walk forms a \\\"semantic signature\\\" that can be compared to another such distribution to get a relat-edness score for texts. On a paraphrase recognition task, the algorithm achieves an 18.5% relative reduction in error rate over a vector-space baseline. We also show that the graph walk similarity between texts has complementary value as a feature for recognizing textual entailment, improving on a competitive baseline system.\",\"PeriodicalId\":359354,\"journal\":{\"name\":\"Workshop on Graph-based Methods for Natural Language Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Graph-based Methods for Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1708124.1708131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Graph-based Methods for Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1708124.1708131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

NLP中的许多任务都受益于对单个单词水平以上的单位的语义相似性的鲁棒度量。丰富的语义资源(如WordNet)提供了词汇级的本地语义信息。然而,有效地结合这些信息来计算短语或句子的分数是一个开放的问题。我们的算法通过随机漫步从底层词法资源构建的图来聚合局部相关性信息。图行走的平稳分布形成了一个“语义签名”,可以将其与另一个这样的分布进行比较,以获得文本的相关性分数。在释义识别任务中,该算法在向量空间基线上实现了18.5%的错误率相对降低。我们还表明,文本之间的图行走相似度作为识别文本蕴涵的特征具有互补价值,改进了竞争性基线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Walks for Text Semantic Similarity
Many tasks in NLP stand to benefit from robust measures of semantic similarity for units above the level of individual words. Rich semantic resources such as WordNet provide local semantic information at the lexical level. However, effectively combining this information to compute scores for phrases or sentences is an open problem. Our algorithm aggregates local relatedness information via a random walk over a graph constructed from an underlying lexical resource. The stationary distribution of the graph walk forms a "semantic signature" that can be compared to another such distribution to get a relat-edness score for texts. On a paraphrase recognition task, the algorithm achieves an 18.5% relative reduction in error rate over a vector-space baseline. We also show that the graph walk similarity between texts has complementary value as a feature for recognizing textual entailment, improving on a competitive baseline system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信