{"title":"分布式累积触发器的通信高效跟踪","authors":"Ling Huang, M. Garofalakis, A. Joseph, N. Taft","doi":"10.1109/ICDCS.2007.93","DOIUrl":null,"url":null,"abstract":"In recent work, we proposed D-Trigger, a framework for tracking a global condition over a large network that allows us to detect anomalies while only collecting a very limited amount of data from distributed monitors. In this paper, we expand our previous work by designing a new class of queries (conditions) that can be tracked for anomaly violations. We show how security violations can be detected over a time window of any size. This is important because security operators do not know in advance the window of time in which measurements should be made to detect anomalies. We also present an algorithm that determines how each machine should filter its time series measurements before back-hauling them to a central operations center. Our filters are computed analytically such that upper bounds on false positive and missed detection rates are guaranteed. In our evaluation, we show that botnet detection can be carried out successfully over a distributed set of machines, while simultaneously filtering out 80 to 90% of the measurement data.","PeriodicalId":170317,"journal":{"name":"27th International Conference on Distributed Computing Systems (ICDCS '07)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Communication-Efficient Tracking of Distributed Cumulative Triggers\",\"authors\":\"Ling Huang, M. Garofalakis, A. Joseph, N. Taft\",\"doi\":\"10.1109/ICDCS.2007.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent work, we proposed D-Trigger, a framework for tracking a global condition over a large network that allows us to detect anomalies while only collecting a very limited amount of data from distributed monitors. In this paper, we expand our previous work by designing a new class of queries (conditions) that can be tracked for anomaly violations. We show how security violations can be detected over a time window of any size. This is important because security operators do not know in advance the window of time in which measurements should be made to detect anomalies. We also present an algorithm that determines how each machine should filter its time series measurements before back-hauling them to a central operations center. Our filters are computed analytically such that upper bounds on false positive and missed detection rates are guaranteed. In our evaluation, we show that botnet detection can be carried out successfully over a distributed set of machines, while simultaneously filtering out 80 to 90% of the measurement data.\",\"PeriodicalId\":170317,\"journal\":{\"name\":\"27th International Conference on Distributed Computing Systems (ICDCS '07)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"27th International Conference on Distributed Computing Systems (ICDCS '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2007.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Distributed Computing Systems (ICDCS '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2007.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Communication-Efficient Tracking of Distributed Cumulative Triggers
In recent work, we proposed D-Trigger, a framework for tracking a global condition over a large network that allows us to detect anomalies while only collecting a very limited amount of data from distributed monitors. In this paper, we expand our previous work by designing a new class of queries (conditions) that can be tracked for anomaly violations. We show how security violations can be detected over a time window of any size. This is important because security operators do not know in advance the window of time in which measurements should be made to detect anomalies. We also present an algorithm that determines how each machine should filter its time series measurements before back-hauling them to a central operations center. Our filters are computed analytically such that upper bounds on false positive and missed detection rates are guaranteed. In our evaluation, we show that botnet detection can be carried out successfully over a distributed set of machines, while simultaneously filtering out 80 to 90% of the measurement data.