采用粒子群算法优化增益的四分之一车辆主动悬架系统PI控制器

J. Ghafouri, A. Sakhavati, R. Jovari, G. Gharehpetian
{"title":"采用粒子群算法优化增益的四分之一车辆主动悬架系统PI控制器","authors":"J. Ghafouri, A. Sakhavati, R. Jovari, G. Gharehpetian","doi":"10.1109/ICCIAUTOM.2011.6356687","DOIUrl":null,"url":null,"abstract":"The active suspension is the main technology for vehicles to achieve both ride control and comfort performance. In this paper, a Proportional- Integral (PI) controller is applied on a quarter models to control the active suspension system. Also, the ride quality, travel suspension and handling is improved. The values of PI controller gain are tuned by using Particle Swarm Optimization (PSO) algorithm to achieve ride stability and comfort performance of vehicles. In order to design the proposed PI controller, a new cost function has been defined. PSO algorithm has been applied to optimize new cost function. The cost function is considered as a sum of peak response vector and settling time vector of body acceleration. The results demonstrate that the proposed PI controller improves the tradeoff between ride comfort and suspension travel and tire deflection compared to the PI controller tuned using Genetic Algorithm (GA) and passive suspension system.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PI controller for quarter vehicle active suspension system with optimized gains using PSO algorithm\",\"authors\":\"J. Ghafouri, A. Sakhavati, R. Jovari, G. Gharehpetian\",\"doi\":\"10.1109/ICCIAUTOM.2011.6356687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active suspension is the main technology for vehicles to achieve both ride control and comfort performance. In this paper, a Proportional- Integral (PI) controller is applied on a quarter models to control the active suspension system. Also, the ride quality, travel suspension and handling is improved. The values of PI controller gain are tuned by using Particle Swarm Optimization (PSO) algorithm to achieve ride stability and comfort performance of vehicles. In order to design the proposed PI controller, a new cost function has been defined. PSO algorithm has been applied to optimize new cost function. The cost function is considered as a sum of peak response vector and settling time vector of body acceleration. The results demonstrate that the proposed PI controller improves the tradeoff between ride comfort and suspension travel and tire deflection compared to the PI controller tuned using Genetic Algorithm (GA) and passive suspension system.\",\"PeriodicalId\":438427,\"journal\":{\"name\":\"The 2nd International Conference on Control, Instrumentation and Automation\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Control, Instrumentation and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6356687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

主动悬架是实现车辆平顺性控制和舒适性的主要技术。本文采用比例积分(PI)控制器对四分之一模型进行主动悬架控制。此外,乘坐质量,旅行悬架和处理得到改善。采用粒子群优化(PSO)算法对PI控制器的增益进行调整,以实现车辆的平顺性和舒适性。为了设计所提出的PI控制器,定义了一个新的代价函数。应用粒子群算法对新的成本函数进行优化。将代价函数看作是加速度峰值响应向量和沉降时间向量的和。结果表明,与使用遗传算法(GA)和被动悬架系统调谐的PI控制器相比,所提出的PI控制器改善了平顺性、悬架行程和轮胎偏转之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PI controller for quarter vehicle active suspension system with optimized gains using PSO algorithm
The active suspension is the main technology for vehicles to achieve both ride control and comfort performance. In this paper, a Proportional- Integral (PI) controller is applied on a quarter models to control the active suspension system. Also, the ride quality, travel suspension and handling is improved. The values of PI controller gain are tuned by using Particle Swarm Optimization (PSO) algorithm to achieve ride stability and comfort performance of vehicles. In order to design the proposed PI controller, a new cost function has been defined. PSO algorithm has been applied to optimize new cost function. The cost function is considered as a sum of peak response vector and settling time vector of body acceleration. The results demonstrate that the proposed PI controller improves the tradeoff between ride comfort and suspension travel and tire deflection compared to the PI controller tuned using Genetic Algorithm (GA) and passive suspension system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信