具有人类反馈的教学代理:TAMER框架的演示

W. B. Knox, P. Stone, C. Breazeal
{"title":"具有人类反馈的教学代理:TAMER框架的演示","authors":"W. B. Knox, P. Stone, C. Breazeal","doi":"10.1145/2451176.2451201","DOIUrl":null,"url":null,"abstract":"Incorporating human interaction into agent learning yields two crucial benefits. First, human knowledge can greatly improve the speed and final result of learning compared to pure trial-and-error approaches like reinforcement learning. And second, human users are empowered to designate \"correct\" behavior. In this abstract, we present research on a system for learning from human interaction - the TAMER framework - then point to extensions to TAMER, and finally describe a demonstration of these systems.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Teaching agents with human feedback: a demonstration of the TAMER framework\",\"authors\":\"W. B. Knox, P. Stone, C. Breazeal\",\"doi\":\"10.1145/2451176.2451201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating human interaction into agent learning yields two crucial benefits. First, human knowledge can greatly improve the speed and final result of learning compared to pure trial-and-error approaches like reinforcement learning. And second, human users are empowered to designate \\\"correct\\\" behavior. In this abstract, we present research on a system for learning from human interaction - the TAMER framework - then point to extensions to TAMER, and finally describe a demonstration of these systems.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

将人类互动融入智能体学习有两个重要的好处。首先,与强化学习等纯粹的试错方法相比,人类的知识可以大大提高学习的速度和最终结果。其次,人类用户有权指定“正确”的行为。在这篇摘要中,我们研究了一个从人类交互中学习的系统——TAMER框架,然后指出了TAMER的扩展,最后描述了这些系统的一个演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teaching agents with human feedback: a demonstration of the TAMER framework
Incorporating human interaction into agent learning yields two crucial benefits. First, human knowledge can greatly improve the speed and final result of learning compared to pure trial-and-error approaches like reinforcement learning. And second, human users are empowered to designate "correct" behavior. In this abstract, we present research on a system for learning from human interaction - the TAMER framework - then point to extensions to TAMER, and finally describe a demonstration of these systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信