Gp-demo算法中随机森林与高斯过程建模的比较

Miha Mlakar, Tea Tušar, B. Filipič
{"title":"Gp-demo算法中随机森林与高斯过程建模的比较","authors":"Miha Mlakar, Tea Tušar, B. Filipič","doi":"10.6025/ISEJ/2019/6/1/9-14","DOIUrl":null,"url":null,"abstract":"In surrogate-model-based optimization, the selection of an appropriate surrogate model is very important. If solution approximations returned by a surrogate model are accurate and with narrow confidence intervals, an algorithm using this surrogate model needs less exact solution evaluations to obtain results comparable to an algorithm without surrogate models. In this paper we compare two well known modeling techniques, random forest (RF) and Gaussian process (GP) modeling. The comparison includes the approximation accuracy and confidence in the approximations (expressed as the confidence interval width). The results show that GP outperforms RF and that it is more suitable for use in a surrogate-model-based multiobjective evolutionary algorithm.","PeriodicalId":140458,"journal":{"name":"Information Security Education Journal (ISEJ)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing Random Forest and Gaussian Process Modeling in the Gp-demo Algorithm\",\"authors\":\"Miha Mlakar, Tea Tušar, B. Filipič\",\"doi\":\"10.6025/ISEJ/2019/6/1/9-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In surrogate-model-based optimization, the selection of an appropriate surrogate model is very important. If solution approximations returned by a surrogate model are accurate and with narrow confidence intervals, an algorithm using this surrogate model needs less exact solution evaluations to obtain results comparable to an algorithm without surrogate models. In this paper we compare two well known modeling techniques, random forest (RF) and Gaussian process (GP) modeling. The comparison includes the approximation accuracy and confidence in the approximations (expressed as the confidence interval width). The results show that GP outperforms RF and that it is more suitable for use in a surrogate-model-based multiobjective evolutionary algorithm.\",\"PeriodicalId\":140458,\"journal\":{\"name\":\"Information Security Education Journal (ISEJ)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Security Education Journal (ISEJ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6025/ISEJ/2019/6/1/9-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Education Journal (ISEJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/ISEJ/2019/6/1/9-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基于代理模型的优化中,选择合适的代理模型是非常重要的。如果代理模型返回的解近似值是准确的,并且置信区间很窄,那么使用该代理模型的算法需要更少的精确解计算来获得与不使用代理模型的算法相当的结果。在本文中,我们比较了两种著名的建模技术,随机森林(RF)和高斯过程(GP)建模。比较包括近似精度和近似置信度(表示为置信区间宽度)。结果表明,GP算法优于RF算法,更适合用于基于代理模型的多目标进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Random Forest and Gaussian Process Modeling in the Gp-demo Algorithm
In surrogate-model-based optimization, the selection of an appropriate surrogate model is very important. If solution approximations returned by a surrogate model are accurate and with narrow confidence intervals, an algorithm using this surrogate model needs less exact solution evaluations to obtain results comparable to an algorithm without surrogate models. In this paper we compare two well known modeling techniques, random forest (RF) and Gaussian process (GP) modeling. The comparison includes the approximation accuracy and confidence in the approximations (expressed as the confidence interval width). The results show that GP outperforms RF and that it is more suitable for use in a surrogate-model-based multiobjective evolutionary algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信