Glinda:一个在异构平台上加速不平衡应用程序的框架

Jie Shen, A. Varbanescu, H. Sips, M. Arntzen, D. Simons
{"title":"Glinda:一个在异构平台上加速不平衡应用程序的框架","authors":"Jie Shen, A. Varbanescu, H. Sips, M. Arntzen, D. Simons","doi":"10.1145/2482767.2482785","DOIUrl":null,"url":null,"abstract":"Heterogeneous platforms integrating different processors like GPUs and multi-core CPUs become popular in high performance computing. While most applications are currently using the homogeneous parts of these platforms, we argue that there is a large class of applications that can benefit from their heterogeneity: massively parallel imbalanced applications. Such applications emerge, for example, from variable time step based numerical methods and simulations. In this paper, we present Glinda, a framework for accelerating imbalanced applications on heterogeneous computing platforms. Our framework is able to correctly detect the application workload characteristics, make choices based on the available parallel solutions and hardware configuration, and automatically obtain the optimal workload decomposition and distribution. Our experiments on parallelizing a heavily imbalanced acoustic ray tracing application show that Glinda improves application performance in multiple scenarios, achieving up to 12x speedup against manually configured parallel solutions.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Glinda: a framework for accelerating imbalanced applications on heterogeneous platforms\",\"authors\":\"Jie Shen, A. Varbanescu, H. Sips, M. Arntzen, D. Simons\",\"doi\":\"10.1145/2482767.2482785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous platforms integrating different processors like GPUs and multi-core CPUs become popular in high performance computing. While most applications are currently using the homogeneous parts of these platforms, we argue that there is a large class of applications that can benefit from their heterogeneity: massively parallel imbalanced applications. Such applications emerge, for example, from variable time step based numerical methods and simulations. In this paper, we present Glinda, a framework for accelerating imbalanced applications on heterogeneous computing platforms. Our framework is able to correctly detect the application workload characteristics, make choices based on the available parallel solutions and hardware configuration, and automatically obtain the optimal workload decomposition and distribution. Our experiments on parallelizing a heavily imbalanced acoustic ray tracing application show that Glinda improves application performance in multiple scenarios, achieving up to 12x speedup against manually configured parallel solutions.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482767.2482785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

集成不同处理器(如gpu和多核cpu)的异构平台在高性能计算中非常流行。虽然大多数应用程序目前都在使用这些平台的同构部分,但我们认为有一大类应用程序可以从它们的异构性中受益:大规模并行不平衡应用程序。例如,这种应用出现在基于变时间步长的数值方法和模拟中。在本文中,我们提出了一个在异构计算平台上加速不平衡应用程序的框架Glinda。我们的框架能够正确检测应用程序工作负载特征,根据可用的并行解决方案和硬件配置进行选择,并自动获得最佳的工作负载分解和分布。我们对一个严重不平衡声射线追踪应用程序的并行化实验表明,Glinda在多种情况下提高了应用程序的性能,与手动配置的并行解决方案相比,实现了高达12倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glinda: a framework for accelerating imbalanced applications on heterogeneous platforms
Heterogeneous platforms integrating different processors like GPUs and multi-core CPUs become popular in high performance computing. While most applications are currently using the homogeneous parts of these platforms, we argue that there is a large class of applications that can benefit from their heterogeneity: massively parallel imbalanced applications. Such applications emerge, for example, from variable time step based numerical methods and simulations. In this paper, we present Glinda, a framework for accelerating imbalanced applications on heterogeneous computing platforms. Our framework is able to correctly detect the application workload characteristics, make choices based on the available parallel solutions and hardware configuration, and automatically obtain the optimal workload decomposition and distribution. Our experiments on parallelizing a heavily imbalanced acoustic ray tracing application show that Glinda improves application performance in multiple scenarios, achieving up to 12x speedup against manually configured parallel solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信